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1 Introduction 
Applications that process large, distributed, data have become increasingly prominent.  This 

dependence on data and the pervasiveness of wide-area networks has led to the development of a 

filter-programming based application, known as the DataCutter [1].  At the same time, the large 

set of included libraries and the adherence to object oriented design of the Java language has led 

to its wide adoption.  With the new increases in performance, Java is fast becoming a realistic 

alternative to C++, even in high-performance application areas.  The acceptance of the Java 

language has created a need for a similar infrastructure that allows its use on a distributed 

system.  This paper presents a development of an expanded filter-stream programming 

infrastructure to allow distributed applications to be developed in Java.  The expanded system 

focuses on providing both a service to Java development and a merger between the languages of 

C++ and Java.  The paper also presents experimental results demonstrating the influence of Java 

on the performance of the application. 

2 Previous Research 
The existing distributed application is known as the DataCutter and was originally developed by 

Michael D. Beynon at the Department of Computer Science at the University of Maryland, 

College Park.  The DataCutter application is based on the Grid programming approach [1].   

It is created to allow several application components, or filters, to run on separate machines and 

establish communication through streams.  The first step is the creation of a daemon to 

administrate the creation of app daemons.  This daemon runs an app daemon on every machine 

that hosts a filter and serves as the infrastructure between the filters.  Communication between 

filters is restricted to the input and output streams which are provided by a main application [1].  

The main application establishes the location of the filters and requests instances of filters from a 

user-created function by filter name.  Each filter is a specialized user class that processes data 

and returns the result to the requester [1].  A filter consists of three functions, an initialization 

function called when a filter is created on a machine, a process function which is called 

repeatedly while data arrives, and a finalize function called when a filter terminates.  The console 

then establishes the means of communication between filters through user-defined parameters 

and proceeds to launch.  The filters perform their tasks and are terminated by the system when 
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they are done.  The filters are built around the stream abstractions [1].  Streams deliver data in 

fixed-size buffers [1].   

 

The current system can be seen as: 

 
 

The current application lacks the ability to create Java filters.  Since Java has become a popular 

language, the need for Java filters has grown.  The question of the efficiency of Java applications 

has also been raised.  Therefore, the DataCutter application must be expanded to include Java.  

This will open the path to Java filter creation and the possibility of experimental evidence of 

Java’s performance. 

3 Algorithm 

3.1 Approach 

In order to provide the infrastructure to Java applications, two different approaches were 

explored.  One approach was the development of the infrastructure purely in Java, using the 

previously developed DataCutter as a reference.  An alternative approach was the use of the 

provided JNI API to allow the Java infrastructure to use existing C++ code.  The pure Java 

infrastructure was ultimately abandoned because of the scope of the required development and 

the problem of maintaining consistency between both infrastructures. The pure Java 

infrastructure would also require a separate system to mix of Java and C++ filters in a single 

application.  Therefore, the JNI model was adopted despite several downsides.  The first of these 

was the lack of C++ support in JNI.  Ultimately, this was dealt with by developing an emulation 
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of class structure across languages.  A more fundamental problem was the added overhead of the 

cross-language calls.  This was expected to be a reasonable expense, after taking the Java virtual 

machine creation overhead into account. The prototype uses the JNI capability because the 

downsides of the alternative outweighed its advantages.  It also provides a natural mechanism for 

combining Java and C++ filters in a single distributed application.  In an attempt to address the 

concerns about performance, the experimental results provide an estimate of the impact of the 

JNI model. 

3.2 C++ Infrastructure Modifications 

The development of the Java infrastructure focused on allowing the creation of Java filters that 

could coexist together with other Java filters and C++ filters.  In order to make the Java filters 

compatible with the existing C++ infrastructure for DataCutter, several additions were required 

to the existing C++ code.   

 

The first addition was required to allow the C++ infrastructure to create Java filters.  To isolate 

the infrastructure from these changes, a special system filter was created which acts as a C++ 

version of a Java filter.  An instance of this filter exists for each created Java filter on a system 

and provides a path for calls to travel from the C++ infrastructure to a Java filter.  These calls 

include the requests for filter creation and the invocation of user-implemented filter functions.   

 

The second addition was necessary to allow Java to recognize C++ functions.  Functions that 

will be called by Java must be registered, or recorded, in the Java virtual machine upon creation.  

Two approaches are possible.  The first is the creation of a shared object, containing the C++ 

infrastructure, which is loaded by the Java filter.  The second is the manual loading of the virtual 

machine by the C++ infrastructure.  The approach used was that of manual loading of the virtual 

machine.  This approach is more natural because the Java filters are created by the C++ 

infrastructure and, when the first Java filter is loaded on a machine, the virtual machine can also 

be loaded.  To isolate the registration of these methods, a singleton class was created to maintain 

an instance of the created virtual machine and provide access to Java from the C++ code. 
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3.3 Java Infrastructure 

Finally, several classes present in C++ were mimicked in Java to provide necessary DataCutter 

functionality.  As a result, the C++ infrastructure had to be expanded to allow the emulation of 

class-structure between the languages.  JNI allows a Java function to call a corresponding C 

function, but does not allow state to be maintained in the system.  There is no built in way for a 

JNI function in C++, called from a Java function, to know what instance of a C++ class it is 

attached to.  This functionality is not present in JNI because it was originally developed to 

interface to C and not C++.  The approach used to maintain the state is known as the Registry 

implementation [2].  The C++ infrastructure creates a singleton hash map that stores a Java class 

hash code, used as the key, and a pointer to a corresponding C++ class.  Each function in the 

C++ class is copied in the Java emulated class and uses native a call into C++.  There, the 

instance of the C++ class is retrieved based on the hash code passed down from Java and the 

appropriate function is called on the C++ instance.  After the C++ function finishes, any result is 

returned back to the Java class.  In addition, all public member variables are wrapped by 

functions that forward the calls to cause modification to the C++ data members.  The downside 

of this approach is that a user-implemented hash code function can break the uniqueness of the 

hash key.  However, Java provides a default implementation that is based on memory location of 

a class instance and allows unique keys, without user intervention.  The completed classes 

provide a Java filter with the necessary functionality to allow it to interact with the existing C++ 

infrastructure.   

 

A caveat of this approach is the problem of public class pointers or references in C++ contained 

within other classes.  In this case, it is not enough to simply provide the functions to wrap the 

class member and forward calls.  The problem stems from the fact that in order to return a result 

class in Java a new instance would have to be created every time a get function is called.  This 

happens because the Java class would have no information about an already existing instance.  

The problem impedes user functionality by invalidating all previously returned Java class 

instances.  That is, a user may call get once and save the reference, and, upon the next call to get, 

the user’s previous reference becomes invalidated because its connection to the C++ 

infrastructure is overwritten by the new instance.  To avoid this and the performance impact of 

unnecessary instance creation, whenever a C++ class stores a pointer or reference to another 
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class, the Java mimicking class also holds a corresponding reference.  Whenever appropriate the 

Java class’s reference is updated to ensure its C++ connection is consistent. 

 

Together, these modifications allow the Java filter to interact with other filters, C++ or Java 

through the existing infrastructure.  No changes are required to the existing filters to allow the 

addition of Java filters.  Any changes would be made to the main function, where the Java filters 

and their connections will be listed.  Therefore, the Java filters are isolated from the existing 

code to allow maximal flexibility in modification of each part separately of the other.  The Java 

filters will also automatically benefit from any enhancements made in the C++ infrastructure and 

any added functionality can be easily emulated in the corresponding Java classes. 

3.4 System Overview 
The resulting system can be viewed as the following: 

 
 

The main console application, which controls the filters, remains in C++, as does the app 

daemon.  The user must provide a function that returns an instance of a filter based on a string 

name.  The added C++ infrastructure allows a user to call a single function to see if a given 

string is a valid Java filter, returning an error if a failure occurs.  Whenever a Java filter is 

created, the C++ infrastructure verifies the existence of the Java virtual machine, and creates an 

instance of the appropriate Java filter.  The creation of the Java filter illustrates the up-calls to the 

Java virtual machine.  The Java filter has three functions, start_work, called on filter creation, 
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process, called repeatedly when data arrives, and finish_work, called when a filter is destroyed.  

The emulated classes in Java provide the filter access to the stream abstraction through down-

calls to the infrastructure. 

4  Results 

4.1 Performance Testing 

The performance experiments were done on the hyena.cs.umd.edu and condor.cs.umd.edu. 

Machine Name Machine 
Type 

OS Machine Type 

hyena.cs.umd.edu Sparc 5.6 Generic_105181-21  Ultra-5_10

condor.cs.umd.edu Sparc  5.6 Generic_105181-21 Ultra-1

All experimental results were created using milliseconds as the standard unit of time measure.  

The timeval structure was used to calculate elapsed time in C++ and 

System.getCurrentTimeMillis() was used to calculate elapsed time in Java. 

 

The first experiment was designed to find the overhead of the creation of all the necessary 

objects for a Java filter.  Therefore, an empty filter was written in both C++ and Java and was 

created on hyena.cs.umd.edu. 

Filter Language First Run Subsequent Runs 
Java 1560  400

C++ 0.02  0.02 

As expected, the creation of a Java filter has a lot of overhead.  However, a Java filter’s creation 

time is cut dramatically after the first run.  This is most likely due to the optimizations by the 

Java virtual machine. 

 
In order to determine what was causing the large delays in Java filter creation, an experiment 

was developed where two filters were created on a single machine.  This experiment was 

designed to determine how much time is used by the creation of static structures, such as a 

virtual machine.  The filters were once again created on hyena.cs.umd.edu. 
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First Run Subsequent Runs 
Filter Language 

1st Filter 2nd Filter 1st Filter 2nd Filter 

Java 1540 360 400 140 

C++ 0.013 0.013 0.013  0.010 

The creation of the JVM (Java Virtual Machine) on the first run took 1200 milliseconds on the 

first filter.  Upon further experimentation, it was discovered that 250 milliseconds was used to 

actually create the appropriate Java class from C++.  This result implies that there is a large 

delay for JNI calls from C++ into Java that impedes Java filter creation speed.  However, both 

the creation of the JVM and the calls into Java are optimized on second runs, with the JVM 

creation dropping to only 240 milliseconds.  To determine the cost of forwarding calls to the 

appropriate filter functions in a Java a test used a filter with all the functions blank was used. 

Function Called Time Taken 

init .5 

process .5  

finalize .2 

As can be seen here, there is some performance impact of calling the Java functions, but it is 

reasonable. 

 

Having finished an evaluation of individual runtimes, the impact of Java on inter-filter 

communication was examined.  Since the main function of filters is stream input and output, the 

experiment included an evaluation of read and write calls in both C++ and Java filters.  The 

experiment consisted of running two filters on two machines, with one filter being a producer 

and one a consumer.  Each run of the filter sent several buffers of varied size in bytes.  In order 

to better evaluate performance, all pairs of C++ and Java connections were tested and the filters 

were switched between the two machines.   
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The tables below indicate the results: 

Producer 

Language 

Producer  

Location 

Consumer 

Language 

Consumer 

Location 

Buffer 

Size  

Write 

Results 

Read 

Results 

Java hyena.cs.umd.edu Java condor.cs.umd.edu 10 2 3

Java hyena.cs.umd.edu C++ condor.cs.umd.edu 10 1 1

C++ hyena.cs.umd.edu Java condor.cs.umd.edu 10 0.1 3

C++ hyena.cs.umd.edu C++ condor.cs.umd.edu 10 0.1 1

Java condor.cs.umd.edu Java hyena.cs.umd.edu 10 2 2

Java condor.cs.umd.edu C++ hyena.cs.umd.edu 10 3 0.5

C++ condor.cs.umd.edu Java hyena.cs.umd.edu 10 0.2 2

C++ condor.cs.umd.edu C++ hyena.cs.umd.edu 10 0.2 0.07

 
Producer 

Language 

Producer  

Location 

Consumer 

Language 

Consumer 

Location 

Buffer 

Size  

Write 

Results 

Read 

Results 

Java hyena.cs.umd.edu Java condor.cs.umd.edu 100 0 1

Java hyena.cs.umd.edu C++ condor.cs.umd.edu 100 0 0.1

C++ hyena.cs.umd.edu Java condor.cs.umd.edu 100 0.06 1

C++ hyena.cs.umd.edu C++ condor.cs.umd.edu 100 0.06 0.1

Java condor.cs.umd.edu Java hyena.cs.umd.edu 100 0 1

Java condor.cs.umd.edu C++ hyena.cs.umd.edu 100 0 0.06

C++ condor.cs.umd.edu Java hyena.cs.umd.edu 100 0.1 0

C++ condor.cs.umd.edu C++ hyena.cs.umd.edu 100 0.1 0.06
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Producer 

Language 

Producer  

Location 

Consumer 

Language 

Consumer 

Location 

Buffer 

Size  

Write 

Results 

Read 

Results 

Java hyena.cs.umd.edu Java condor.cs.umd.edu 1000 1 1

Java hyena.cs.umd.edu C++ condor.cs.umd.edu 1000 1 0.1

C++ hyena.cs.umd.edu Java condor.cs.umd.edu 1000 0.07 1

C++ hyena.cs.umd.edu C++ condor.cs.umd.edu 1000 0.07 .01

Java condor.cs.umd.edu Java hyena.cs.umd.edu 1000 1 1

Java condor.cs.umd.edu C++ hyena.cs.umd.edu 1000 1 0.06

C++ condor.cs.umd.edu Java hyena.cs.umd.edu 1000 0.1 0

C++ condor.cs.umd.edu C++ hyena.cs.umd.edu 1000 0.1 0.06

 
Producer 

Language 

Producer  

Location 

Consumer 

Language 

Consumer 

Location 

Buffer 

Size  

Write 

Results 

Read 

Results 

Java hyena.cs.umd.edu Java condor.cs.umd.edu 10000 1 0

Java hyena.cs.umd.edu C++ condor.cs.umd.edu 10000 1 0.1

C++ hyena.cs.umd.edu Java condor.cs.umd.edu 10000 0.2 1

C++ hyena.cs.umd.edu C++ condor.cs.umd.edu 10000 0.2 0.2

Java condor.cs.umd.edu Java hyena.cs.umd.edu 10000 1 0

Java condor.cs.umd.edu C++ hyena.cs.umd.edu 10000 1 0.06

C++ condor.cs.umd.edu Java hyena.cs.umd.edu 10000 0.5 0

C++ condor.cs.umd.edu C++ hyena.cs.umd.edu 10000 0.4 0.06

 

 11



 
Producer 

Language 

Producer  

Location 

Consumer 

Language 

Consumer 

Location 

Buffer 

Size  

Write 

Results 

Read 

Results 

Java hyena.cs.umd.edu Java condor.cs.umd.edu 100000 11 1

Java hyena.cs.umd.edu C++ condor.cs.umd.edu 100000 11 0.1

C++ hyena.cs.umd.edu Java condor.cs.umd.edu 100000 12 0

C++ hyena.cs.umd.edu C++ condor.cs.umd.edu 100000 11 0.2

Java condor.cs.umd.edu Java hyena.cs.umd.edu 100000 11 0

Java condor.cs.umd.edu C++ hyena.cs.umd.edu 100000 10 0.06

C++ condor.cs.umd.edu Java hyena.cs.umd.edu 100000 10 0

C++ condor.cs.umd.edu C++ hyena.cs.umd.edu 100000 10 0.06

 
The experiment shows several interesting results.  The first is that the cost to read and write the 

first buffer is greater than subsequent ones, even though it is the smallest in size.  This increase 

in performance is present in both C++ and Java, with the difference being greater Java.  As a 

result, the performance difference between Java and C++ decreases after the first buffer.   

 

A summary of Java versus C++ write times is shown below: 
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The graph above shows the change in write times in C++ starting from the second buffer to the 

last versus the Java write times.  The performance of each buffer is the average of all writes for 

that size by a given language.  The C++ filter remains faster than Java until the last buffer when 

a severe slowdown in the underlying filter library evens out the performance.  It can therefore be 

seen that the performance of Java eventually matches that of C++ in writing when the buffer size 

is large enough, implying that there is a flat cost present in all Java writes that is eventually 

balanced out by the per-byte cost. 

 

The read times for Java show greater fluctuations than those in C++.  The reason for this is that 

there is no timer with a finer grain than one millisecond in Java.  Therefore, when times for Java 

reads are less than one millisecond, they are rounded down to zero.  The frequency of zero and 

one millisecond reads is approximately equal.  Consequently, Java reads take approximately 0.5 

milliseconds while C++ reads take approximately 0.1 milliseconds.  Since the read times are not 

affected by the size of the buffer as the write times, the Java performance does not match that of 

C++ because of the flat cost of the JNI calls. 

5 Conclusions 
The provided Java infrastructure allows a user to create an application consisting of both the Java 

and C++ filters, giving maximal flexibility.  As expected, the major time-sinks in the running of 

Java filters are the cross-language calls and the creation of a Java virtual machine.  Attempting to 

decrease the number of JNI interactions between the languages can improve the application 

performance.  There is also the need for the development of more Java filter applications to 

quantify the performance of Java on different platforms and applications. 
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