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1 Introduction

Content word deletion has widely been identified as a common error in statistical machine
translation systems. We refer to a translation error as “content word deletion” when a
content word appears in the reference translation of some sentence, but is absent from
the system output translation of that sentence. For our purposes, the term “content
word” does not have a precise definition, but represents any word that we judge to carry
semantic meaning in the sentence. We hypothesize that a major source of content word
deletion is the use of translation rules that contain unaligned content words on the source
side. The following is a rule of this type:

Source: �ú ,
Target: ,

In this rule, the Chinese content word �ú, which translates to “pointed out” in English,
aligns to nothing on the target side of the rule. Put simply, this rule says that if we see
the Chinese word for “pointed out” followed by a comma, we can translate these two
words to just a comma in English. The use of the rule above in our translation system
was the direct cause of the content word deletion error seen here:

Source: &f Ïå ë¥ �ú , $ ð °} Û�� ...
System Output: the london daily express , two portable computer ...
Reference: the london daily express pointed out that two laptop computer ...

Preliminary experiments show that simply creating a universal penalty for all rules with
unaligned source words does not improve the quality of our translation system. In addi-
tion, we intuitively believe that more refined penalization methods are necessary, because
there are many Chinese function words such as � which have no direct meaning in En-
glish, and even the Chinese word discussed above �ú can be left out of the translation
in some contexts. In the following example from the training data, �ú is unaligned,
but the English translation is completely fluent:
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Source: F �ý �º �ú , i� � '' �  �ý � ý2 �/
Reference: but according to us public opinion , expansion of the army will

greatly increase us defense expenditure .

Thus, the goal of this project is context dependent penalization of rules with unaligned
source words. Here, “context dependent” means that the penalty (i.e. feature score) is
a function of the unaligned word itself, the other words surrounding the sentence, the
structure of the rule, and so on.

In section 2, we will give a brief overview of our current, state of the art translation
system. This section will also explain exactly what it means for a word to be unaligned,
and how unaligned words end up in our translation rules. In section 3 we will provide
details of the various features that we implemented in our attempt to reduce content
word deletion errors. In section 4, we will present our results.

2 Overview of the statistical machine translation sys-

tem

We use state of the art hierarchcial MT system based off of David Chiang’s Hiero [2]. The
MT system can be divded into three major steps: Alignment of parallel training data,
rule creation/generalization, and decoding. An overview of each step is provided below.

2.1 Alignment of parallel training data

Given a source/target sentence pair (sJ
1 , tI1), we denote an alignment between these two

sentence as aJ
1 , where the jth source word is aligned to (i.e. translates to) the aj

th target
word. The special alignment aj = 0 means that the source word at index j does not align
to any target words. In a more intuitive definition, aj = 0 says that meaning of word j is
not semantically encoded in any words in the target side of the training sentence. We use
GIZA++ with IBM models 1-4 [1] and the HMM model [7] to align the parallel training
corpus. Given a set of K sentence pairs {(sk, tk), k = 1...K}, the goal is to find the set
of hidden parameters θ that maximizes the likelihood of the training corpus [4]:

θ̂ = arg max
θ

K∏
k=1

∑
a

pθ(sk, a|tk) (1)

Where pθ(sk, a|tk) represents the probability that sk maps to tk using the alignment a,
under the hidden parameters θ. We determine the hidden parameters θ̂ using the EM
algorithm. Once this has been determined, we can find the highest probability alignment
âJ

1 between each sentence pair sJ
1 and tI1, which is known as the Viterbi alignment:

âJ
1 = arg max

aJ
1

pθ̂(s
J
1 , aJ

1 |tI1)

The implications of this alignment model are as follows:
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� Some words in the source language may be unaligned
� Some words in the target language may be unaligned
� Multiple words in the source language can be aligned to the same word in the target

language
� A word in the source language cannot be aligned to multiple words in the target

language

In order to get around these limitations, we perform a “backward” alignment bI
1 from the

target language to the source language, which is done by running GIZA++ again with
the the source language and target language switched. We then combine the alignment
vectors aJ

1 and bI
1 to create an I × J alignment matrix A. If we let A1 = {(aj, j)|aj > 0}

and A2 = {(i, bi)|bi > 0}, then we let our final alignment matrix A = combine(A1, A2).
The combine() function is described in Och et al. (2004) as the “refined method” for
combining forward and backward alignment. This refined method can be thought of as
being “between” the set intersection and set union, i.e. (A1 ∩ A2) ⊆ combine(A1, A2) ⊆
(A1 ∪ A2).

The resulting alignment A is a many-to-many mapping between the source and target
sentences, where any number of words on both the source and target side may be un-
aligned. The aligned parallel corpus, represented as a set of K triples (sk, tk, Ak), is
directly used as the input to the rule extraction process.

2.2 Extraction of translation rules

We use a hierarchical rule extraction process as described in Chiang et al. (2005)[2]. As
a first step, all phrase translations are extracted from each training triple (sk, tk,Ak).
We extract each possible phrase translation 〈ŝ, t̂〉 such that no words in ŝ are aligned to
any other target words (other than the ones in t̂), and no words in t̂ are aligned to any
other source source words (other than the ones in t̂). For the purpose of this paper, it is
important to note is that unaligned words may appear on the edges or in the center of
these rules.

We convert the phrase rules to hierarchical rules by first converting each phrase pair 〈ŝ, t̂〉
to a CFG rule X → 〈ŝ, t̂〉, and then subtracting each phrase pair 〈ŝ, t̂〉 from each rule
in the form X → 〈γ1ŝγ2, α1t̂α2〉 to create the hierarchical rule X → 〈γ1Xγ2, α1Xα2〉. In
order to reduce the number of possible rules that can be created, we apply restrictions
to the size of phrases that can be extracted and subtracted, and we also apply filtering
based on the current test set. Joint and marginal counts are then summed over all the
rules.

2.3 Decoding

For decoding, we use a hierarchical model that closely follows Chiang’s Hiero, as described
in Chiang (2005). In this model, we create a shared forest of weighted translation rules
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for the sentence being decoded. We use a log linear model to score each translation rule:

w(X → 〈γ, α〉) =
∏
i

φi(X → 〈γ, α〉)δi

log(w(X → 〈γ, α〉)) =
∑

i

δiφi(X → 〈γ, α〉)

Since hierarchcial rules form a CFG, the test sentence is parsed on the source side (using
a chart parser similar to CKY), creating a shared forest of target derivations. The
score of a derivation (i.e. a full sentence) is thus the sum of the scores of each rule
used in that derivation. Each rule can have an arbitrary number of features, and the
feature weights are generally determined automatically through optimization towards an
evaluation metric such as BLEU [5]. Some basic features include:

� Language model score
� P (γ|α) [3]
� P (α|γ)
� Lexical probability
� Word penalty, i.e. a feature equal to the number of words in α

We can easily extend the decoding model by adding new features that are functions of
the rule X → (γ, α), the sentence being decoded (including parsing), outside decoding
statistics, and so on. The next section describes the features that we added in order to
reduce content word deletion errors.

3 New decoding features

We created and tested a number of features with the aim of reducing content word
deletion errors. These were implemented as a decoding feature within our log-linear
model, and thus the weights for each feature were optimized automatically towards BLEU.
The specifics of each feature are described below. Multiple features were also tested at
the same time, where it made sense.

Note: The following refers to the feature score some translation rule R with unaligned source
word W . For example, if R is the rule given in section 1 above, then W would be the word �
ú. Some rules may have more than one unaligned source word, in which case the feature scores
for each W were calculated independently, and then summed to provide the total feature score
for R.

1. Whether or not W appeared on a manually created function word list.
A Chinese speaker created a list of roughly one hundred Chinese function words,
and R was not penalized if W was included in this list. The idea behind this was
that function words usually require no direct translation, so we shouldn’t penalize
rules that have unaligned function words.
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2. Whether W appeared on the edge or in the middle of the source side of
R.
W is considered in the middle of R if there are aligned words (terminals or non-
terminals) to its left and right. Otherwise, W is considered on the edge of R. For
example, in (1), �ú is in the middle of the rule, since it has an aligned ‘,’ to its
right and an aligned non-terminal ‘X’ to its left. The idea behind this feature was
that it is more ’dangerous’ to include rules with unaligned words on the edge of the
source phrase during rule extraction, and so we would want to penalize these rules
more harshly.

3. The percent of time that W was unaligned in the training data.
For each word s in the training data, we calculated the counts C(s) and Cunalign(s),
where C(s) is the number of times s was seen total and Cunalign(s) is the number
of times s was seen unaligned. The percentage value is simply Cunalign(s)/C(s).
W e tried this value directly and with simple smoothing.

4. The percent of time that W ’s part-of-speech tag was unaligned in the
training data.
Since the parallel corpus was tagged, we iterated through and calculated C(t) and
Cunalign(t), for every Chinese part-of-speech tag t. “W ’s part-of-speech tag” is the
tag that W received in the context of the test sentence, and is not related to rule
R or the training data.

5. The percent of time that W + part-of-speech was unaligned in the train-
ing data.
The counts were calculated in the same way as above, except that every word and
part-of-speech combination was counted separately. So C(Υ, V erb) would be the
total number of times that �ú was seen tagged as a Verb, and Cunalign(Υ, V erb)
would be the total number of times that �ú was seen tagged as a Verb, and wasn’t
aligned to anything on the English side.

6. Discrete “bins” of the above percentages.
If the percent of time that W (or W ’s part of speech, or W +POS) is unaligned in
the training data is denoted as p, then the penalty score for rule R is f(p), where
f is some function. In most of our experiments, we used f(p) = p, e.g. if W was
unaligned 25% of the time in the training data, the penalty would simply be 0.25.
In our current translation model, we assign an optimized weight z to each feature,
so that the actual penalty on R is f(p)z. Note that since p < 1.0 (assuming W is
unaligned even once), if f(p) = p then this feature will always penalize the rule, even
if W is unaligned 95% of the time, because 0.95x < 1 when x > 0. Intuitively, we
would think that if W was unaligned 95% of the time, then we shouldn’t penalize
the rule at all, and we might even want to reward the rule. However, coming up with
a good function for f is difficult, and it is not something that can be done through
automatic optimization. Instead we can create n different features, and then put
each penalty score into a feature “bin,” so we can automatically optimize a good
approximation of f. For example, say we have two features bins corresponding to
0.0 ≤ p < 0.7 and 0.7 ≤ p ≤ 1.0 and two weights z1 and z2 corresponding to the
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two bins. If z1 > 0 and z2 < 0, then p < 0.7 would penalize R, while a p ≥ 0.7
would reward R. Or more realistically it could end up that z1 > z2 > 0, and thus
we penalize lower p values more harshly. Note that these weights zi are found using
automatic optimization, but the number of bins and the ranges for each bin cannot
be optimized automatically.

7. The translation entropy of W.
This was a simple entropy calculation, where the probability distribution was the
translation probabilities of all the translation rules that had W as the rule’s source
phrase.

8. Whether or not there are unaligned words in the target side of R.
The penalty scores were put into separate features depending on whether or not
there was at least one unaligned word on the target side of R. The idea was that an
unaligned word on the target side of R might be a translation of W, so we would
want to penalize R less. However, our tests showed that rules of this type were
extremely rare.

4 Results

The results are presented in Table 1. The numbers in the “experiment” column refer to
the feature conditions listed above. Unfortunately, none of the conditions tested showed
a consistent gain in TER and BLEU scores. Manual analysis of the results show that
many deletion errors were fixed, but a number of “insertion errors” were introduced, likely
offsetting the gain.

Table 1: BLEU/TER scores of test conditions on NIST test set
Experiment BLEU TER
Baseline 40.31 52.11
(1)+(2) 40.23 52.14
(3)+(2) 40.05 52.09
(4) 39.97 52.25
(5) 40.86 52.25
(5) + (6) 39.95 52.04
(7) 40.05 52.05
(8) 40.24 51.93

The following example demonstrates how the deletion error shown in the introduction
was fixed from the use of feature (5):

Baseline: the london daily express , two portable computer ...
Feature (5): london daily express said , two laptop computer ..
Reference: london daily express pointed out that two laptop computers ...
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However, the use of feature (5) also caused an extraneous insertion in the following
example. The word “bosnia” does not appear in the baseline output or reference:

Baseline: ... austria , bulgaria , croatia , germany , greece , italy , romania ,
slovakia , ukraine and russia and europe ...

Feature (5): ... austria , bulgaria , croatia , germany , greece , italy , romania ,
slovenia , bosnia , ukraine and russia’s territory in europe ...

Reference: ... austria , bulgaria , croatia , germany , greece , italy , romania ,
slovenia , ukraine , and the european territory of russia ....

It is important to note that in the example where the deletion error was fixed, the sentence
not receive a better TER or BLEU score because “said” does not exactly match “pointed
out”. This is a known and widely discussed weakness in the TER and BLEU evaluation
metrics, and the general conclusion is that if some new feature really does cause the
system to produce better translations, then this will be reflected by BLEU and TER over
a large number of sentences. In other words, we could reason that if a feature actually
fixes more deletion errors than it does create new insertion errors, then the BLEU/TER
scores over the whole test set should be better. However, when manually comparing the
baseline output to the output of a test condition (feature (5)), there appear to be many
more cases of fixed deletion errors than new insertion errors. Thus, we believe that there
may be an increase in the quality of translation output from the use of these features,
even though it is not reflected in the TER and BLEU scores. In order to determine if this
is the case, an HTER evaluation would be needed on a significant number of sentences.
HTER involves human annotation of the system output and references, and unlike TER
or BLEU, HTER factors in semantic equivalence between words in the system output
and words in the reference translation [6].

Despite the lack of conclusive positive results, we still feel that content word deletion
errors are a major problem in statistical machine translation, and that unaligned source
words are a major cause of these errors. We will continue to work to reduce these errors
through the use of novel decoding features and more refined evaluation methods.
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