
Automatically Derived Multi-level Word Classes for
MT

Jacob Devlin

May 14, 2008

1 Introduction

Grouping words into semantic classes is a well studied task in NLP and MT research.
The goal of this project was to automatically derive a multi-level hierarchy of bilingual
word pair classes, for use in generalized rule extraction. This means that we have a set of
k bilingual word pairs in our source and target languages 〈s1, t1〉, 〈s2, t2〉, ...〈sk, tk〉, where
each sj → tj has been extracted as a translation rule from our aligned training data.
Note that each word pair must be unique, but there is no limit as to how many pairs any
given source or target word can appear in. We want to group these word pairs into an n
level class hierarchy, where there are mj classes at the jth level, and mj < mj+1.

If k = 100000, n = 3, m1 = 1000, m2 = 100, m3 = 10, we would first group the 100000
word pairs into 1000 classes, then group these 1000 classes into 100 classes, then group
these 100 classes into 10 classes, all based on semantic similarity. These classes would
then be used as the basis for Chiang style generalized rule creation (the standard term
is “hierarchical” rule creation, but we will use “generalized” to differentiate it from the
hierarchical class structure). The implementation details are described in section 4, but
we will first give an overview of our MT system, and then provide a constructed example,
which should help the reader understand the intuition behind this project.

2 Overview of the MT system

We use state of the art hierarchcial MT system based off of David Chiang’s Hiero [2]. The
MT system can be divded into three major steps: Alignment of parallel training data,
rule creation/generalization, and decoding. An overview of each step is provided below.

1

2.1 Alignment of parallel training data

Given a source/target sentence pair (sJ
1 , tI1), we denote an alignment between these two

sentence as aJ
1 , where the jth source word is aligned to (i.e. translates to) the aj

th target
word. The special alignment aj = 0 means that the source word at index j does not
align to any target words. We use GIZA++ with IBM models 1-4 [1] and the HMM
model [6] to align the parallel training corpus. Under this alignment model, we have
a one-to-many mapping between the source words and target words of each training
sentence pair. In order to get a more desirable many-to-many mapping, we first perform
a ‘backward” alignment from the target language to the source language, which is done
by running GIZA++ again with the the source language and target language switched.
These alignments are converted into two dimensional matrices and combined using a
function that is “between” simple set union and set intersection [4].

The resulting alignment A is a many-to-many mapping between the source and target
sentences, where any number of words on both the source and target side may be un-
aligned. The aligned parallel corpus, represented as a set of K triples (sk, tk, Ak), is
directly used as the input to the rule extraction process.

2.2 Extraction of translation rules

We use a hierarchical rule extraction process as described in Chiang et al. (2005)[2]. As
a first step, all phrase translations are extracted from each training triple (sk, tk,Ak).
We extract each possible phrase translation 〈ŝ, t̂〉 such that no words in ŝ are aligned to
any other target words (other than the ones in t̂), and no words in t̂ are aligned to any
other source source words (other than the ones in t̂). For the purpose of this paper, it is
important to note is that unaligned words may appear on the edges or in the center of
these rules.

We convert the phrase rules to hierarchical rules by first converting each phrase pair 〈ŝ, t̂〉
to a CFG rule X → 〈ŝ, t̂〉, and then subtracting each phrase pair 〈ŝ, t̂〉 from each rule
in the form X → 〈γ1ŝγ2, α1t̂α2〉 to create the hierarchical rule X → 〈γ1Xγ2, α1Xα2〉. In
order to reduce the number of possible rules that can be created, we apply restrictions
to the size of phrases that can be extracted and subtracted, and we also apply filtering
based on the current test set. Joint and marginal counts are then summed over all the
rules.

2.3 Decoding

For decoding, we use a hierarchical model that closely follows Chiang’s Hiero, as described
in Chiang (2005). In this model, we create a shared forest of weighted translation rules
for the sentence being decoded. Since hierarchical rules form a CFG, the test sentence
is parsed on the source side using a chart parser similar to CKY thereby creating the
shared forest of target derivations. We use a log linear model to score each translation

2

rule:

w(X → 〈γ, α〉) =
∏

i

φi(X → 〈γ, α〉)δi

log(w(X → 〈γ, α〉)) =
∑

i

δiφi(X → 〈γ, α〉)

The score of a derivation (i.e. a full sentence translation) is thus the sum of the scores of
each rule used in that derivation. Each rule can have an arbitrary number of features, and
the feature weights are generally determined automatically through optimization towards
an evaluation metric such as BLEU [5]. Basic features include:

� Language model score
� P (γ|α) [3]
� P (α|γ)
� Lexical probability
� Word penalty, i.e. a feature equal to the number of words in α

3 An example

We will now present a constructed example in order to explain the intuition behind this
project. Imagine that the following rules were extracted from a set of aligned Spanish to
English training data. The X on the left hand side represents a non-terminal, since all
rules in the hierarchical model are in CFG form. Note that in the standard generalized
rule creation process, there is only one non-terminal:

X → 〈el coche azul, the blue car〉 (1)

X → 〈azul, blue〉 (2)

X → 〈rojo, red〉 (3)

X → 〈movido rapido, moved fast〉 (4)

X → 〈el coche, the car〉 (5)

We would then create the following generalized rule from (1) and (2):

X → 〈el coche X, the X car〉 (6)

Now imagine that we were decoding the following sentence “el coche movido rapido”.
The decoder could use rules (6) and (4) in the following manner:

X0 → 〈el coche X1, the X1 car〉 (7)

X1 → 〈movido rapido, moved fast〉

Which would result in the translation “the moved fast car”. Of course, the language model
would disfavor this translation, but the important thing to note is that the translation

3

model does not “remember” that the non-terminal in (6) originally came from (2). Thus,
the model does not take into account the fact that rules (4) and (2) are semantically
dissimilar while (3) and (2) are semantically similar, so it may not be as reliable to use
(4) with (6) when translating “el coche movido rapido” as it would be to use (3) with (6)
when translating “el coche rojo”.

However, instead of having only one non-terminal, we could cluster the translations into
semantic classes before generalization:

COLOR → 〈azul, blue〉 (8)

COLOR → 〈rojo, red〉 (9)

Then, instead of creating the generalized rule (6), we would create the following general-
ized rule:

X → 〈el coche COLOR, the COLOR car〉 (10)

(11)

Which would disallow translation (7). Alternatively, we could create a hierarchy of in-
creasingly large semantic classes:

COLOR → 〈azul, blue〉 (12)

ADJ → 〈azul, blue〉 (13)

X → 〈azul, blue〉 (14)

Which would then create rules all three of the following rules:

X → 〈el coche COLOR, the COLOR car〉 (15)

X → 〈el coche ADJ, the ADJ car〉 (16)

X → 〈el coche X, the X car〉 (17)

We would expect that rule (15) would “naturally” have a higher translation probability
than (17), since for all non-generalized rules in the form “el coche w → the w car”, we
would expect that

Count(w is a COLOR)

Count(words in COLOR)
>

Count(w is any word)

Count(total words)

Thus, when translating “el coche rojo” the model would be encouraged to use this gener-
alization, while when translating “el coche movido rapido”, it would not be. In addition
to this natural probability difference, we explicitly added an optimizable feature which
denoted what hierarchy level a generalized rule came from.

In this project, we followed this multi-level semantic clustering approach for creating
generalized rules. The major way that the above example differs from the actual imple-
mentation is that we did not explicitly choose classes such as “color” and “adjective”,
instead we chose just the number of classes at each level and derived them automatically
based on a semantic similarity score. The implementation details are described in the
next section.

4

4 Deriving the word classes

In our experiments we chose to use a 4-level class hierarchy with 1000, 100, 10, and 1
classes at each level. The basis for our clustering algorithm was a semantic similarity
score between each bilingual word pair, which we will denote as BiSim(〈s1, t1〉, 〈s2, t2〉).
This function is defined as:

BiSim(〈s1, t1〉, 〈s2, t2〉) = p(s1|t1) ∗ p(s2|t2) ∗MonoSim(s1, s2) ∗MonoSim(t1, t2)

The probability p(s|t) is defined in the normal way for our model:

p(s|t) =
Count(s, t)∑
s′ Count(s′, t)

where Count(s, t) is the number of times that the rule “s → t” is extracted from the
aligned training data.

The monolingual similarity measure MonoSim(w1, w2) is derived from a language model
in that language. We defined this function as:

MonoSim(w1, w2) =
∑

S

p(w1|S)p(w2|S)p(S)

where S is a state in the language model. In other words, S is a set of word w1, w2, ..., wn,
and then p(w|S) = p(w|w1, w2, ..., wn) is just the normal language model probability:

P (w|S) = p(w|w1, w2, ..., wn) =
Count(w1, w2, ..., wn, w)∑
w′ Count(w1, w2, ..., wn, w′)

and

P (S) =

∑
w′ Count(w1, w2, ..., wn, w′)

total words in monolingual corpus

Note that no smoothing is performed and we actually prune the monolingual distance
tables so the bilingual similarity table is fairly sparse, i.e. BiSim(〈s1, t1〉, 〈s2, t2〉) = 0
for most word pairs. We extract each word pair 〈s, t〉 from our set of non-generalized
translation rules. Only one-word to one-word translations are extracted, since BiSim()
is only defined for single word pairs.

In order to cluster the word pairs into the first level of classes we used a simple greedy
algorithm based around “centroids”, which are word pairs choosen to represent each
class. If the number of classes a the lowest clustering level is m1, then we want to pick
m1 centroids from the k word pairs. max sim is a predefined value which designates
the maximum similarity that any two centroids may have. The following psuedocode
describes the algorithm:

C ← List of centroids, initially empty
L ← Sort the word pairs by the number of other word pairs that they have a non-zeros
similarity with.

5

while L is not empty and size(C) < m1

w ← Pop the top of L.
m ← maxc∈C BiSim(w, c), i.e. the max similarity between w and any existing cen-

troid
if m ≤ max sim

push w onto C

After choosing the centroids, we assign the remaining word pairs to a class by clustering
them with the centroid that they have the highest similarity with. After the initial
clusters are chosen, we performed iterative clustering by updating the centroids of each
class and re-clustering. This update was performed by choosing a new centroid w in each
class c such that w = argmaxw∈c

∑
w′ 6=w∈C BiSim(w, w′).

After the initial clustering was performed, we performed “super clustering” with another
simple greedy algorithm based on a “super cluster similarity measure”. In the first level
of super clustering we simply treated each word class as a super cluster with one word
class in it. The following psuedocode describes the algorithm:

S ← List of super clusters, sorted by total number of words
while size(S) < mn

s ← Pop the top of S (s will be smallest super cluster)
r ←argmaxr∈SSuperClusterSim(s, r), i.e. the super cluster with the highest simi-

alry to s
Remove r from S
q ← s ∪ r (s and r are just sets of classes).
Reinsert q into S, keeping S sorted by size

We tried different functions for SuperClusterSim(s, r), but the one we generally used
was to take the mean similary between all of the centroids of s and the centroids of r.

Remember that each word pair w = 〈s, t〉 was actually a translation rule R = X : s → t
with associated translation probabilities. If we have n levels of word clustering, each w
will appear in exactly n super clusters (one at each hierarchy level), which we can denote
as c1, c2, ..., cn. In this context cj represents a unique id number given to that class.
Thus, after clustering is complete, we add n new translation rules for each w, c1 : s → t,
c2 : s → t, ... , cn : s → t. The probabilities associated with each of these new rules
are the same as the original probabilies of R. As described in the example, the higher
probability rules come after generalized rule extraction. After all of the new rules are
added, generalized rule creation is performed as described in Section 3, Section 2, and
Chiang (2005). Hierarchical decoding performed as described in Section 2 and Chiang
(2005).

6

5 Results

The results of decoding with different class hierarchies are presented in Table 1. Although
all configurations scored better than the baseline (which had no generalization), the
hierarchical clustering setup (4 cluster levels, 1000, 100, 10, 1 classes in each level) did
not perform better than standard single-word rule generalization (1 class containing all
words).

Table 1: TER/BLEU scores with different clustering hierarchies

Cluster Levels Used TER BLEU
Baseline (No Classes) 56.38 35.35
1000 55.91 36.15
1000, 100, 10 ,1 55.17 36.99
1 55.20 37.16

We performed some analysis on the rules used in the different experiment configurations,
and the results are presented in Table 2. In general, we believe that an increase in average
source phrase length (the number of terminals in the source side of the translation rule)
will increase translation quality, all other things being equal. The reason behind this
should be fairly obvious; for example translating a three word phrase as a single unit is
likely going to be more accurate than translating each word sepeartely and concatenating
the translations. In Table 2, we can see that although the hierarchcial configuration uses
significantly more generalized rules than the single class configuration, the mean phrase
length is roughly the same.

Another thing to note is that the hierarchical class model does not introduce any “new”
rules, meaning that every translation possible under under hierarchical class configuration
is also possible under the single class configuration. The hierarchical configuration simply
encourages the decoder to use semantically similar generalized rule substitutions (e.g.,
substitute a color in “el coche X → the X car” rather than any arbitrary phrase).
However, if errors like the one presented in the constructed example do not really happen
to any significant degree, then the hierarchical configuration may not be beneficial.

Table 2: Analysis of rules used in decoding

Cluster Levels Used Percent of Phrases
Using Gen. Rules

Mean Source Phrase
Length

Baseline (No Classes) 0.00% 2.176
1000 16.64% 2.211
1000, 100, 10 ,1 30.86% 2.294
1 22.32% 2.289

7

We can conclude that creating generalized rules based on a hierarchy of semantic word
classes does not increase the quality of MT output compared to the standard rule gener-
alization method. One possible reason is that ungrammatical CFG parses, as shown in
example (7), do not occur when only single word generalizations are allowed. In future
work, rather than only using bilingual word pairs, we can group bilingual phrases into
semantic classes and generalize in the same way as described above. Additionally, it is
also possible that rule generalizations describe a syntactic relationship, while the bilingual
word classes described in this experiment are grouped by a semantic similarity measure.
Clustering based on syntactic relationships or a syntactic/semantic combination may be
more beneficial.

8

References

[1] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, and Robert L. Mercer.
The mathematic of statistical machine translation: Parameter estimation. Computa-
tional Linguistics, 19(2):263–311, 1994.

[2] David Chiang, Adam Lopez, Nitin Madnani, Christof Monz, Philip Resnik, and
Michael Subotin. The hiero machine translation system: Extensions, evaluation, and
analysis. In Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing, pages 779–786, Vancouver,
British Columbia, Canada, October 2005. Association for Computational Linguistics.

[3] Philipp Koehn, Franz Josef Och, and Daniel. Statistical phrase-based translation. In
Proceedings of HLT-NAACL 2003, page 127133, 2003.

[4] Franz Josef Och and Hermann Ney. The alignment template approach to statistical
machine translation. Computational Linguistics, page 417449, 2004.

[5] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In ACL ’02: Proceedings of the
40th Annual Meeting on Association for Computational Linguistics, pages 311–318,
Morristown, NJ, USA, 2001. Association for Computational Linguistics.

[6] Stephan Vogel, Hermann Ney, and Christoph Tillmann. Hmm-based word alignment
in statistical translation. In Proceedings of the 16th conference on Computational lin-
guistics, pages 836–841, Morristown, NJ, USA, 1996. Association for Computational
Linguistics.

9

