
1

Elliptic Curve Cryptography and Its Applications to Mobile Devices.

Wendy Chou,
University of Maryland, College Park.
Advisor: Dr. Lawrence Washington,

Department of Mathematics

Abstract: The explosive growth in the use of mobile and wireless devices 
demands a new generation of PKC schemes that has to accommodate limitations 
on power and bandwidth, at the same time, to provide an adequate level of 
security for such devices. This paper examines the use of ECC in such 
constrained environments and discusses the basis of its security, explores its 
performance and lastly, surveys the use of ECC applications on the market 
today.

1 Introduction

In 1976, Whitfield Diffie and Martin Hellman introduced the concept of public 
key cryptography (PKC). Since then, many implementations of it have been 
proposed, and many of these cryptographic applications base their security on 
the intractability of hard mathematical problems, namely the integer 
factorization problem (IFP) and the finite field discrete logarithm problem 
(DLP). Over the years, sub-exponential time algorithms were developed to solve 
these problems. As a result, key sizes grew to more than 1000 bits, so as to 
attain a reasonable level of security. In constrained environments where 
computing power, storage and bandwidth are limited, carrying out thousand-bit 
operations becomes an impractical approach to providing adequate security. 
This is most evident in hand-held devices such as the mobile phones, pagers and 
PDAs that have very limited processing power and battery life.

Proposed independently by Neal Koblitz and Victor Miller in 1985, 
elliptic curve cryptography (ECC) has the special characteristic that to date, the 
best known algorithm that solves it runs in full exponential time. Its security 
comes from the elliptic curve logarithm, which is the DLP in a group defined by 
points on an elliptic curve over a finite field. This results in a dramatic decrease 
in key size needed to achieve the same level of security offered in conventional 
PKC schemes.

This paper aims to examine two aspects of the ECC, namely its security 
and efficiency, so as to provide grounds as to why the ECC is most suitable for 
constrained environments. We begin by introducing the three mathematical 
problems and the various algorithms that solve them. An overview of 
implementation methods and considerations will be provided, followed by 
comparisons in the performance of ECC with other PKC applications. Lastly, 
there will be a survey of current ECC applications in various mobile devices.

1.1 The Need for Public Key Cryptography

Private key cryptography is widely used for the encryption of data due to its 
speed. The most commonly used today is the Data Encryption Standard (DES). 
It has an extremely fast encryption speed and this is a very attractive quality in 
terms of efficiency; however, it has certain shortcomings that make it unsuitable 
for use in the m-commerce environment.



2

I. Key Management Problem

A wireless user should be able to conduct business transactions with not just one 
party, but with many different ones. Thus, communication on a public network 
is not restricted to one-on-one, but a large number of users. For a network of n
users, n(n-1)/2 private keys need to be generated. When n is large, the number of 
keys becomes unmanageable.

II. Key Distribution Problem

With such a large number of keys that needs to be generated on a network, the 
job of generating the keys and finding a secure channel to distribute them 
becomes a burden.

III. No digital signatures possible

A digital signature is an electronic analogue of a handwritten signature. If Alice 
sends an encrypted message to Bob, Bob should be able to verify that the 
received message is indeed from Alice. This can be done with Alice’s signature; 
however, private key cryptography does not allow such a feature.

In contrast, public key cryptography uses two keys. Each user on a 
network publishes a public encryption key that anyone can use to send them 
messages, while keeping the private key secret for decryption. On a network of 
n users, it only needs n public and n private keys. This reduces the number of 
keys needed from O(n2) to O(n). Furthermore, it allows the use of digital 
signatures, which ensures non-repudiation. However, public key cryptography 
does have its drawbacks. Compared to private key cryptography, public key 
cryptography is orders of magnitude slower. RSA needs at least 1024-bit keys 
while DES needs only 64 bits. In truth, public and private key cryptography 
work best together [2]. Public key cryptography is ideal for key distribution and 
management, ensuring data integrity, providing authentication and non-
repudiation, while private key cryptography is ideal for ensuring confidentiality, 
such as encrypting data and communication channels. These are the four main 
objectives in any cryptographic application.

1.2 Choice of Public Key Cryptosystem

When it comes to choosing which public key cryptosystem to employ 
in a mobile environment, one has to keep in mind restrictions on bandwidth, 
memory and battery life. In constrained environments such as mobile phones, 
wireless pagers or PDAs, these resources are highly limited. Thus, a suitable 
public key scheme would be one that is efficient in terms of computing costs and 
key sizes.

To date, the ECC has the highest strength-per-bit compared to other 
public key cryptosystems. Small key sizes translate into savings in bandwidth, 
memory and processing power. This makes ECC the obvious choice in this 
situation. However, there are other aspects that need to be taken into account. In 
the following section, we will examine the different mathematical problems that 
underlie the majority of the public key cryptosystems in use today. We will also 
discuss some of the most efficient algorithms that solve them. This will give us a 
better understanding of the security on which different types of public key 
cryptosystems are based.



3

2. Security of Public Key Cryptosystems

As mentioned before, many of the public key cryptosystems base their security 
on the difficulty of solving a mathematical problem. Today, there are three 
problems that are believed to be both secure and practical after years of 
intensive studying. They are the 1) integer factorization problem, 2) finite field 
discrete logarithm problem and the 3) elliptic curve discrete logarithm problem. 
(Although there are other cryptographic systems that are lattice based, they will 
not be discussed in this paper.) While this by no means proves that they are 
unbreakable, it is highly unlikely that anyone will find an efficient algorithm to 
solve them in the near future. 

The security of a cryptosystem depends on how hard it is to solve the 
underlying mathematical problem. The difficulty of a problem is determined by 
the asymptotic runtime of the algorithms that solve the problem. 

Definition: An algorithm with input size n is sub-exponential if there 
are constants c  0 and   [0,1) such that the running time of the 
algorithm is in 

Ln[, c] = ( exp((c(1))(ln x)(ln ln x)1-) ) [3].

If  = 0, then the algorithm runs in polynomial time. If  = 1, then the algorithm 
is fully exponential.

2.1 Integer Factorization Problem (IFP)

2.1.1 Problem definition

The general integer factorization problem is defined as follows.

Given a positive integer n, write n = p1
e1p2

e2p3
e3…pk

ek where the pi

are pairwise distinct primes and each ei  1 [4].

Typically, in practical cryptographic applications, only two factors are used for 
the modulus n. A larger number of factors for n does not seem to offer any 
additional security in the IFP.

The best-known public key cryptosystem that bases its security on the 
difficulty of the IFP is RSA. Named after its inventors: Ron Rivest, Adi Shamir 
and Len Adleman who developed it at MIT in 1978, it was the first practical 
implementation of public key cryptography since the introduction of the 
concept. Another example is the Rabin-Williams cryptosystem. It is similar to 
RSA, but it uses an even public exponent [4].

2.1.2 Factoring algorithms

The basic idea behind factoring involves finding two numbers x and y such that 
(1) x2  y2 (mod n) and (2) x  y (mod n), where n is the number to be factored. 
Since (1)  (x  y)(x  y)  0 (mod n), and (2) implies that n does not divide (x 
 y) and (x  y), then gcd(x  y, n) and gcd(x  y, n) must be nontrivial factors of 
n. Two of the most extensively used factoring algorithms today are the quadratic 
sieve and number field sieve. They are both based on the idea of finding a factor 
base of primes to generate a system of linear equations, whose solution will lead 
to equation (1) such that (2) holds.



4

The quadratic sieve (QS) is a general-purpose factoring algorithm 
because its runtime depends solely on the size of n. An improved variant of the 
QS, the multiple polynomial QS, achieves a runtime of 

(I) Ln[1/2,1]. 
It gives a better chance of factoring, is well suited for parallel processing, and is 
the method of choice in practice [4].

Another example of a general-purpose factoring algorithm is the 
generalized number field sieve (NFS). Initially developed as a special purpose 
algorithm that factored integers of the form n = re – s for small r and |s|, it was 
later extended to work also for general integers [4]. The generalized NFS is 
considered to be the fastest algorithm for factoring general numbers of at least 
120 decimal digits. It achieves a runtime of Ln[1/3,c], for a constant c1, reducing 
the exponent in (I) [5]. Originally thought to be slower than the QS for factoring 
numbers less than 150 digits, recent experiments have shown that the general 
NFS is substantially faster than the QS, even for numbers in the 115-digit range 
[4]. Due to this, the generalized NFS is considered to be the most powerful of all 
general purpose factoring algorithms. 

2.1.3 The RSA Challenge

In the past couple of decades, dramatic improvements have been made in the 
IFP. Below is a table charting the progress of the factorization of RSA numbers. 
We can see that the factoring of RSA-130 used a new and improved algorithm, 
which achieved the factorization at only 20% of the computing effort used to 
factor the smaller RSA-129.

Number of 
decimal 
digits

Approximate 
number of 

bits

Data 
achieved

MIPS-
years

Algorithm

100 332 April 1991 7 Quadratic sieve
110 365 April 1992 75 Quadratic sieve
120 398 June 1993 830 Quadratic sieve
129 428 April 1994 5000 Quadratic sieve
130 431 April 1996 1000 Generalized number 

field sieve
140 465 February 1999 2000 Generalized number 

field sieve
155 512 August 1999 8000 Generalized number 

field sieve
Table 2-i (A 1-GHz Pentium is about a 250-MIPS machine.) [6]

A recent idea for attacking the IFP is a special machine called 
TWINKLE (The Weizmann Institute Key Locating Engine). Its inventor 
Shamir, who was one of the inventors of the RSA, proposed it in 1999. This 
sieving device can accelerate the sieving process in the NFS algorithm by two to 
three degrees of magnitude [7]. The matrix, however, still has to be solved on a 
conventional computer. The 140-digit RSA number that was broken recently 
took 200 conventional computers that ran in parallel for 4 weeks to complete the 
sieving. In contrast, it would only take 6 days on 7 TWINKLE machines. Since 

                                                       
1 The value of c depends on which version of NFS is used. In the case of special 
NFS, c  (32/9)1/3  1.526, while the generalized NFS has c  (64/9)1/3  1.923.



5

the matrix solution still has to be performed on a conventional computer, this 
would add 4 more days to the factorization, bringing the total number of days to 
10 [7]. The only fact that may bring relief is that TWINKLE, at present, is only 
a theoretical concept. However, it has been noted that the device is practical and 
can be manufactured at a cost of only US$5,000 2 [8]. 

In light of these events, one might ask, “Is the IFP is no longer a hard 
problem?” The general consensus is that it is still a hard problem to solve. 
However, to achieve an adequate level of security, the size of keys must be 
increased to keep up with the frequent developments in the IFP. This security 
comes at a hefty price – the price of immense storage requirements, large 
bandwidth and powerful computing capability, particularly in constrained 
devices.

2.2 Discrete Logarithm Problem (DLP)

Unlike the IFP, where the size of the problem is the length of the modulus n that 
must be factored, the input size for the DLP is the number of points N in the 
group G that we are working with. In the case of the multiplicative group G = 
*p, where p is a large prime, N is equal to the size of the underlying finite field.

2.2.1 Problem definition

Let G = *p be a multiplicative group of order p  1, where the group operation 
is multiplication modulo p. The discrete logarithm problem is defined as 
follows.

Given a prime p, a generator  of *p, and an element   *p, find 
the unique integer x, 0  x  p  2, such that x   (mod p) [4].

Cryptographic applications that base their security on the intractability of the 
DLP include the Diffie-Hellman key agreement scheme, the ElGamal encryption 
scheme and the digital signature algorithm (DSA).

2.2.2 Discrete logarithm algorithms

The most powerful algorithm known for computing the DLP is the index-
calculus method. It is a probabilistic algorithm that applies only to finite fields. 
Examples of finite fields that are commonly used in practical applications are 
GF(p) and GF(2m). The index-calculus method is currently the only known 
algorithm that solves the DLP in sub-exponential time, making it the champion 
of all DL algorithms. The index-calculus method works very similarly to NFS 
and QS of the IFP. It, too, requires the selection of a factor base S of small 
primes such that a significant portion of elements of G can be efficiently 
expressed as products of elements in S. It then builds a database of relations, 
which is used each time the logarithm of a group element is needed. As with the 
IFP algorithms, index-calculus algorithms can easily be parallelized.

DLP in a prime field is considered to be harder than DLP in fields of 
characteristic two. The current record for computing discrete logarithms in 
GF(p) is a 120-digit prime p [9]. This was accomplished by A. Joux et R. 
Lercier in 2001, using a variation of the index-calculus algorithm called the 
number field sieve. This algorithm has an expected running time of Lp[1/3, 
                                                       
2 This is the cost of manufacturing subsequent models of TWINKLE, after 
building the initial prototype, which could cost hundreds of thousands of dollars.



6

1.923] [4]. In contrast, the current record for computing logarithms in GF(2m) is 
GF(2607). Completed in 2002 by E. Thomé , it was achieved by another variant 
of the index-calculus method, called the Coppersmith’s algorithm [9]. This 
algorithm has a runtime of L2

m[1/3,c], for c  1.587 [4].

Algorithms that solve the DLP for arbitrary groups do exist, however 
they all run in full exponential time. Examples include the Pollard -method and 
the baby-step giant-step (BSGS). A downside of BSGS is that it is very memory 
intensive when the group order becomes large. The Pollard -method, on the 
other hand, requires little memory and is easily parallelizable. Another algorithm 
that works for arbitrary groups, but is only efficient for those with orders that are 
made up of small primes, is the Pohlig-Hellman algorithm. Due to this, group 
orders are checked to make sure that the Pohlig-Hellman attack cannot be 
applied. For arbitrary groups, this algorithm also runs in full exponential time.

2.2.3 QS and NFS in DLP and IFP

Both the QS and NFS factoring algorithms are very alike in approach to the 
index-calculus methods of the DLP. “The two problems are very similar, and all 
of the modern factoring algorithms can be used to calculate discrete logarithms 
in the multiplicative group of a finite field” [10]. From this point of view, the 
amount of work done in computing the logarithm in *p, where p has k-bits, can 
be considered to be equal to the amount to work needed to factor a k-bit 
composite number n. Therefore, if any improvements in algorithms are 
discovered for either one of the problems, then improvements can also be 
expected for the other problem [11].

So far, both of the mathematical problems discussed have sub-
exponential algorithms that solve them. In the following section, a different type 
of problem called the elliptic curve discrete logarithm problem will be 
presented. To date, the best algorithm that computes elliptic curve logarithms 
runs in full exponential time.

2.3 Elliptic Curve Discrete Logarithm Problem (ECDLP)

2.3.1 Problem definition

Let E be an elliptic curve over some finite field GF(p) and G = E(Fq) be a 
cyclic additive group, where the group operation is addition modulo p. The 
elliptic curve discrete logarithm problem is defined as follows.

Given P  G and an element Q  <P>, find the integer m, such that Q 
= [m]P [12].

In 1985, Neal Koblitz and Victor Miller independently proposed the concept of 
elliptic curve cryptography (ECC). It is based on the DLP in a group defined by 
points on an elliptic curve over a finite field. Implementations of ECC include 
elliptic curve analogs of DSA (ECDSA), ElGamal and Diffie-Hellman.

2.3.2 ECDLP algorithms

The most attractive feature of ECC is that at present, the fastest known 
algorithm that solves it run in full exponential time. Despite the fact that index-
calculus methods can compute conventional logarithms in sub-exponential time, 
they cannot be applied to the case of discrete logarithms over elliptic curves. 
This is a claim made by Miller in his 1986 paper, which was later backed by 



7

theoretical study and computational experiments by J. H. Silverman and Suzuki 
in their paper published in 1998 [3]. 

To date, the best-known general-purpose algorithm for solving the 
ECDLP is the Pollard -method. It can be sped up with special techniques while 
running on parallel processors to ((n)/(2r)), where n is the number of elliptic 
curve additions and r is the number of processors running [11]. When the orders 
of the curves become sufficiently large, however, methods like Pollard  and 
BSGS become infeasible [12]. In 1997, V. Shoup showed that the running time 
of any algorithm that solves the DLP for arbitrary groups takes (p log p) 
steps, where p is the largest prime factor of N [3]. Hence, to significantly 
improve the efficiency of general purpose algorithms might prove to be a futile 
task. 

2.3.3 Weak curves

There are certain types of elliptic curves in which a successful attack 
could take place in sub-exponential time. If identified, these curves can easily be 
tested for and avoided. So far, several classes of curves have been identified and 
prohibited in all drafted standard specifications for public key cryptography, 
such as IEEE P1363, ANSI X9.62 and ANSI X9.63 [11]. Such curves are called 
the supersingular curves and anomalous curves.

Supersingular curves are a special class of elliptic curves on which the 
elliptic curve logarithm can be reduced to the case of discrete logarithms in a 
multiplicative group (classical DLP). When combined with sub-exponential 
algorithms for solving the classical DLP, this yields a probabilistic sub-
exponential running time for computing elliptic curve logarithms on 
supersingular curves. This was a finding due to Menezes, Okamoto and 
Vanstone (MOV) in 1991, in which they showed how the ECDLP could be 
reduced to classical DLP in an extension of a multiplicative group GF(p)[11]. 
For further reading on the MOV reduction algorithm and proofs, refer to [13].

The other class of curves, the anomalous curves, allows an even more 
efficient attack when applicable. Proposed independently in 1998 by Satoh and 
Araki, Semaev, and the following year by Smart, this type of curves allow the 
ECDLP to be solved in polynomial time by reducing it to the classical DLP in 
an additive group GF(p) [3]. Further readings can be found in [14], [15] and 
[16].

2.3.4 The ECC Advantage

Much like the RSA challenge, the Certicom ECC challenge offers prize money 
for finding various key sizes of the ECDLP. The current record was set in 
November 2002 where a 109-bit encryption key was broken with 10,000 
computers running 24 hours a day for 549 days [17]. The Certicom ECC 
challenge website reports that breaking a 163-bit key, which is the standard 
applied to most commercial ECC applications that Certicom uses, would be a 
hundred million times harder than breaking the 109-bit key. It is worthy to note 
that a 160-bit ECC key has about the same level of security as a 1024-bit RSA 
key.

The most important difference between ECC and other conventional 
cryptosystems is that for a well-chosen curve, the best method currently known 
for solving the ECDLP is fully exponential, while sub-exponential algorithms 
exist for conventional cryptosystems. This difference largely contributes to the 



8

huge disparity in their respective running times. It also means that ECC keys 
have much fewer bits than IFP and DLP based applications. The contrast in key 
lengths of RSA, DSA and ECC are shown in the graph (Graph 3-i) below. 
Clearly, ECC keys take much more effort to break compared to RSA and DSA 
keys. Due to this, many people believe that ECDLP is intrinsically harder than 
the other two problems. While this deduction might be true, we have no way of 
proving it. We do not know if a fast and efficient elliptic curve DL algorithm 
that runs in sub-exponential time will be discovered, say, in the next ten years, 
or if another class of weak curves will be identified that could compromise the 
security of elliptic curve cryptosystems. But one thing is certain. After years of 
intensive study, there is currently no faster way to attack the ECDLP other than 
fully exponential algorithms.

Graph 3-i. [4]

3. Implementation of Elliptic Curve Cryptosystems

There are some important issues that need to be addressed before implementing 
the elliptic curve cryptosystem. We need to decide whether to use an even or 
odd characteristic field, and also how to represent the points on the elliptic 
curve. These choices will not only determine how we implement field arithmetic 
on elliptic curves, but they will also affect the efficiency of the computations. In 
section 3.1, we will go over two types of characteristics of fields, including their 
underlying representations and some field arithmetic operations associated each 
type of basis representations. Section 3.2 discusses the different representations 
of points on the elliptic curve. Section 3.3 shows how to set up the ECC and its 
parameters, and the last section discusses the NIST recommended curves and 
guidelines.



9

3.1 Even and Odd Characteristic Fields

There are two types of characteristics of fields, namely even and odd. The prime 
field GF(p), where p is a large prime, is of odd characteristic. This field has p
elements that are represented by integers modulo p. Field arithmetic on GF(p) is 
implemented in terms of the arithmetic of integers modulo p. The field GF(2m) is 
of even characteristic, specifically, of characteristic 2. There are 2m elements in 
this field, and they are represented as m-dimensional binary vectors over F2, i.e. 
they are bit-strings of length m. Field addition and subtraction are implemented 
as component-wise XOR, while implementations of multiplication and inversion 
(division) depend on the choice of basis.

Arithmetic in a prime field is simple; it is just the arithmetic of integers 
modulo p. For a binary field, the field elements are represented relative to a 
given basis. There are many choices for a basis. A polynomial basis has the form

{1, t, t1, … , tm-1},

where t is a root of an irreducible polynomial p(t) over F2. An irreducible 
polynomial is one that cannot be factored as a product of polynomials of lower 
degree modulo 2. An element of GF(2m)  (a0, a1, … , am-1), where ai  {0,1}, 
w.r.t. a polynomial basis is represented by the polynomial

a0 + a1t + a2t2 … + am-1tm-1 mod p(t),

where p(t) is an irreducible polynomial over F2. Field arithmetic is performed as 
polynomial arithmetic modulo p(t) [18].

A normal basis is of the form

{, 2, 2^2, … , 2 (̂m-1)},

where   GF(2m). Elements of GF(2m)  (a0, a1, … , am-1) w.r.t. a normal basis 
can be written as  

a0 + a12 + a22^2… + am-12 (̂m-1),

where ai  {0,1}. Addition of field elements in normal basis representation is 
simply bitwise XOR-ing of the vector elements. Squaring can be achieved by a 
rotation of the vector elements. This is a cheap operation to perform, thus the 
cost of squaring is often ignored in analyzing runtime complexities. 
Multiplication is more complicated, but, with optimization, it comes down to a 
series of m cyclic shifts of the two vector multiplicands. Inversion (division) is 
the most complex and expensive operation to perform. An example of an 
inversion algorithm is one proposed by Itoh, Teechai and Tsujii, which can be 
found at [24]. Here, division is a recursive algorithm that requires I(m) = 
log2(m1)  (m1)  1 field multiplications, where (m1) is the number of 
1’s in the binary representation of m1[1].

There are a couple of reasons why fields of characteristic 2 would be 
preferred over odd characteristic fields. First of all, the field elements in GF(2m)
are represented as bit-strings of length m. In terms of hardware, bit-string 
representation of integers provides greater ease of implementation than the 
natural representation of integers. Furthermore, with normal basis representation 



10

in GF(2m), squaring can be achieved by a simple rotation of the vector elements, 
which means that the cost of squaring is negligible [1]. Another important factor 
is that normal bases allow for the design of efficient bit-serial multipliers. An 
example is one that was proposed by Massey and Omura [19]. 

3.2 Point Representation

In this section, two types of point representation will be discussed – affine and 
projective coordinates. We will use formulae from point addition in a prime 
field to illustrate the different costs in performing point arithmetic using the two 
representations. Refer to Appendix A for formulae on point addition in fields of 
characteristics 2 and p > 3, using both affine and projective representations.

Affine coordinates (x, y) satisfy the affine equation

(i) E: y2 = x3 + ax + b,

where a, b  GF(p). Referring to formula (A-1) in Appendix A, addition of 
affine coordinates requires 1 inversion, 2 multiplications and 1 squaring 
(ignoring the cost of field additions and subtractions), when P1  P2,. While 
point doubling (P1 = P2) requires 1 inversion, 2 multiplications and 2 squarings.

Conventional projective coordinates (x, y, z) satisfy the homogenous 
Weierstrass equation

E: y2z = x3 + axz2 + bz3,

where a, b  Fp. When z  0, the projective point (x, y, z) corresponds to the 
affine point (x/z, y/z). Projective coordinates are used when field inversions are 
significantly more expensive than field multiplications. With projective 
coordinates, the need for performing inversions is replaced with multiplication, 
thus projective addition can be achieve through only the use of field
multiplications. There are other types of projective representations that are more 
efficient than the convention projective representation. In particular, the 
weighted projective representation (or Jacobian representation) results in a more 
efficient implementation of group operations [12]. Jacobain coordinates (x, y, z) 
correspond to the affine coordinates (x/z2, y/z3), and they satisfy the weighted 
projective curve equation

E: y2 = x3 + axz4 + bz6.

Referring to formula (A-2) in Appendix A, addition of projective coordinates 
requires 16 multiplications, while doubling requires 10 multiplications for 
arbitrary a, and if a = 3, doubling requires only 8 multiplications. Evidently, 
the cost of eliminating inversions is an increased number of multiplications. 
Thus, the need for using projective coordinates is strongly determined by the 
ratio I:M, where I is the number of inversions and M is the number of 
multiplications [12].

The costs of point addition using both representations are summarized 
in the table below. Refer to Appendix A for a similar table on point addition 
over fields of characteristic 2.



11

Cost of point addition, characteristic p > 3.
CoordinatesOperation

affine projective
General addition 1I + 3M 16M
Doubling (arbitrary a) 1I + 4M 10M
Doubling (a = 3) 1I + 4M 8M

Table 4-i. (I = inversion, M = multiplication) [12]

3.3 Curve Selection and Setup

The preferred method for generating good curves is to select the curves at 
random. Randomly generated curves are curves with coefficients that are taken 
from the output of pseudo-random number generators. Below is an example of 
an algorithm that selects an appropriate curve over Fp [12]:

Input:  A large finite field Fp, and a small positive 
integer s’.
Output: An elliptic curve E over Fp, such that E(Fp) = 

s.r, s  s’ and r prime.

1. Draw E at random, with coefficients in Fp.
2. Compute the order of E, #E(Fp).
3. Check the MOV and anomalous conditions. If any 

one of these fails, go to Step 1.
4. Attempt to factor #E(Fp) in ‘reasonable’ time. 

If attempt fails, go to Step 1.
5. If #E(Fp) = s.r, s  s’, and r prime, then 

return E. Otherwise, go to Step 1.

The hardest part of this algorithm is Step 2. For this reason, sometimes E is not 
chosen at random. A class of curves, known as the Koblitz curves, is particularly 
favorable because it was shown to be very efficient in computing ord(P) for 
arbitrary P on the curve, which can in turn be used to derive #E(Fp) quickly. 
There are various algorithms proposed to compute group orders, readers can 
refer to Chapter 7 in [12] for a more in depth treatment of this subject. The 
purpose of Step 5 is to make sure that #E(Fp) has a large prime factor. This is to 
guard against a Pohlig-Hellman attack on the ECDLP.

System parameters A finite field F, 
coefficients that define the curve E,
a point on E called the generator G, 
and ord(G).

Public key A point on curve P = kG, for some secret k.
Secret key The integer k, where 0  k  q, q = ord(P).

Table 4-ii. Setting up an elliptic curve cryptosystem.

Above is a table listing the basic computations necessary to set up an elliptic 
curve cryptosystem. Key pairs are easy to generate; the private key is a 
randomly chosen integer k, such that the public key P = kG. The basic 
assumption of ECC is that it is hard to compute the secret key k from the public 
key P. The elliptic curve parameters can be used for groups of users, where each 
user in the group has a public and private key pair. Another alternative, which 



12

offers more security but additional computation costs, is to use a different curve 
in the same underlying field for each user. This way, all users require the same 
hardware implementation for field arithmetic, but the curve can be changed 
periodically for additional security [1].

3.4 NIST Recommended Fields and Curves

The Federal Information Processing Standards (FIPS) is compilation of 
standards and guidelines issued by NIST for government use. The revised FIPS 
186-2 includes the elliptic curve digital signature algorithm (ECDSA), with 
recommendations on the selection of finite fields and elliptic curves. These 
recommended curves have special properties that allow for optimized 
performance. They are also checked to ensure that none of them belong to the 
class of supersingular and anomalous curves, which are susceptible to MOV and 
other known attacks.

FIPS 186-2 recommends a total of 15 elliptic curves over 10 finite 
fields. For each of the five prime fields and five binary fields, a pseudo-random 
curve is generated using the SHA-1 method specified in ANSI X9.62 and IEEE 
P1363 standards [18, p27]. In addition, a Koblitz curve is selected for each of 
the five binary fields, adding up a total of 15 curves. 

The following considerations were made when choosing the finite 
fields and elliptic curves.

I. Choice of Key Lengths

All curves are chosen to have cofactors 1, 2 or 4. This is done to ensure 
efficiency in computation. As a result, private and public keys have 
approximately the same length in bits [18]. 

II. Choice of Fields

Each field is chosen such that the length of the order in bits is at least twice the 
key length of common private-key (symmetric-key) block ciphers. This is done 
because an exhaustive key search of a k-bit block cipher is expected to take 
about the same time as the solution of an ECDLP, when using the Pollard’s 
algorithm for a suitable elliptic curve over a finite field with an order of length 
2k [20]. Table 3-i below compares private-key lengths with sizes of various 
fields.

Symmetric cipher
key length

Example
algorithm

Bit-length of p
in prime field Fp

Dimension m of
binary field F2

m

80 SKIPJACK 192 163
112 Triple-DES 224 233
128 AES Small 256 283
192 AES Medium 384 409
256 AES Large 521 571

Table 3-i. [20]



13

III. Choice of p in GF(p) and m in GF(2m)

For binary fields GF(2m), m was chosen so that there exists a Koblitz curve of 
almost prime order over GF(2m). For prime fields GF(p), p was chosen to be 
either a Mersenne prime, or a Mersenne-like prime with bitsize being a multiple 
of 32 [20]. A Mersenne prime is a prime of the form 2n1, where n is a prime. 
Prime fields with p being a Mersenne prime allows for efficient modular 
reduction. See Appendix B for examples from FIPS 186-2.

IV. Coefficients of curves over prime fields

All selected curves over a prime finite field satisfy the equation y2 = x3 + ax + b, 
where a = 3.  This allows for efficient point doubling when using Jacobian 
coordinates. For details, refer to IEEE P1363 [20].

4. Performance Analysis

Now, we will turn our attention to the ECC in practical use. In this section, 
software implementations of the DSA and RSA digital signature schemes will 
be compared to ECDSA, and the ElGamal encryption scheme will be compared 
to its elliptic curve counterpart. Experiments were performed on both PCs and 
mobile devices. Data was collected from various studies conducted by research 
institutes and individual experiments. All timings are in milliseconds unless 
stated otherwise. Finite fields recommended by NIST are in italics.

4.1 Digital Signature Schemes

A digital signature is the electronic equivalent of a handwritten signature. When 
attached to an electronic document, it provides authentication of the signer, date 
and time of signature and contents of the signed document. Furthermore, the 
signature must be verifiable to ensure that the signer cannot deny signing the 
document afterwards. Therefore, a digital signature algorithm needs to be able to 
generate keys for the signature, sign a document and verify the signature.

PCs

Platform: Pentium Pro 200 MHz using C, C++ and assembly
Curves:   Random curves over GF(2191) and Fp=192

(Note that Fp=192 , where p = 192 is a Mersenne-like prime, is one of the NIST 
recommended finite fields, and its timing is almost half of curves over GF(2191), 
which is not in FIPS 186-2.3)

System Key generation Signature Verification Total time
ECDSA- F2

191 11.7 11.3 60 83
ECDSA-Fp=192 5.5 6.3 26 37.8
RSA-1024 1 (sec) 43.3 0.65 1,043.95
DSA-1024 22.7 23.6 28.3 74.6

Table 5-i. [21]

Platform: Pentium II 400 MHz using C

                                                       
3 Refer to Appendix B on examples of using Mersenne-like primes to perform 
fast modular multiplication.



14

Curves:    Koblitz and random curves over NIST curves GF(2163), GF(2233), 
GF(2183)

Koblitz curves
System Key generation Signature Verification Total time
ECDSA- F2

163 1.47 2.11 4.09 7.67
ECDSA- F2

233 3.11 4.03 7.87 15.01
ECDSA- F2

283 4.50 5.64 11.46 21.6
Random Curves

System Key generation Signature Verification Total time
ECDSA- F2

163 2.12 2.64 6.46 11.22
ECDSA- F2

233 4.58 5.52 14.08 24.18
ECDSA- F2

283 6.88 8.08 21.15 36.11

RSA
System Key generation Signature Verification Total time
RSA-1024 2,740.87 66.56 3.86 2811.29
RSA-2048 26,442.04 440.69 13.45 2,6896.18

DSA
System Key generation Signature Verification Total time
DSA-768 14,735 15.55 26.13 1,4776.68
DSA-1024 54,674 24.28 47.23 5,9421.28

Tables 5-ii. [21]

Results from Tables 5-ii clearly show that Koblitz curves produce more efficient 
computation speeds compared to RSA and DSA, and together with the NIST 
recommended parameters provided in FIPS 186-2, it proves to be a far superior 
digital signature scheme in terms of efficiency.

PDAs

Platform: (PalmPilot) Motorola Dragon Ball 15 MHz using C
Curves:    Koblitz curves over GF(2163)
(Keep in mind that the input size of ECDSA- GF(2163) is almost twice of that in 
RSA-512.)

System Key generation Signature Verification Total time
ECDSA-F2

163 590 800 2340 3730
RSA-512 360 (sec) 5100 310 3,65410

Table 5-iii. [21]

On Pagers

Platform: (Pager) RIM 10 MHz using C
Curves:    Koblitz and random curves over NIST curves GF(2163), GF(2233), 
GF(2283)

Koblitz curves
System Key generation Signature Verification Total time
ECDSA- F2

163 751 1,011 1,826 3,588
ECDSA- F2

233 1,552 1,910 3,701 7,163
ECDSA- F2

283 2,369 2,760 5,485 10,614



15

Random Curves
System Key generation Signature Verification Total time
ECDSA- F2

163 1,085 1,335 3,243 5,663
ECDSA- F2

233 2,478 3,066 7,321 12,865
ECDSA- F2

283 3,857 4,264 11,587 19,708

RSA (e = 216 + 1)
System Key generation Signature Verification Total time
RSA-1024 580,405 15,889 1,008 597,302
RSA-2048 - 111,956 3,608 -

DSA
System Key generation Signature Verification Total time
DSA-768 - 6,031 11,594 -
DSA-1024 - 9,529 18,566 -

Tables 5-iv. [21]

From Tables 5-iii and 5-iv, it is clear that the verification process for ECDSA is 
slower than that of RSA, but the total timing for all three procedures (key 
generation, signature and verification) of the ECDSA is much faster than RSA 
and DSA. For an ECDSA key size of 163 over Koblitz curves, it takes a total of 
3,588 ms to complete all three procedures, while it takes RSA 597,302 ms, for a 
key size of 1024. As for DSA, the verification process alone is longer than the 
total time required for ECDSA.

Comparisons. It is clear from the results of Tables 5-i – 5-iv that NIST 
recommended finite fields and Koblitz curves offer superior performance 
compared to random curves and fields not in FIPS186-2. On PCs, ECDSA 
outperforms RSA and DSA significantly in overall timing. Although its 
verification process is slightly slower, a 2-3 ms difference is negligible on the 
PC. On the PalmPilot, using a 1024-bit RSA key was unpractical (since only 
small amounts of money of about $10 were involved in the experimental 
transactions), thus a 512-bit key was chosen instead. Compared to the 163-bit 
ECDSA key, ECDSA showed better overall performance. The verification 
process, however, was much slower than the 512-bit RSA. To offset this 
imbalance, a combination of RSA and ECDSA protocols could be used. For 
details, refer to [22]. On pagers, the overall timing for ECDSA is much better 
than RSA and DSA. In conclusion, ECDSA is clearly the most suitable PKC 
scheme in constrained environments.

4.2 Encryption Schemes

In this section, the ElGamal encryption and decryption algorithms will be 
compared to its elliptic curve version. Comparisons will be made on 
cryptosystems with the same level of security. Thus, a 768-bit conventional 
ElGamal should be compared to a 151-bit ECC ElGamal, while a 1024-bit 
conventional ElGamal should be compared to a 173-bit ECC-ElGamal. 
However, for key sizes of 151 and 173 bits on the ECC ElGamal, there does not 
exist trinomial in polynomial bases (PB) nor optimized normal basis in normal 
bases (NB) [23], hence 155 and 183-bit key sizes will be used instead. Note, 
however, that there is slight improvement in security levels in the ECC versions 
of ElGamal.

Platform: Pentium II 175 MHz, Linux OS



16

System Encryption Decryption
ElGamal-768 13,100 6,640
ECC ElGamal-155 (NB) 248 123
ECC ElGamal-155 (PB) 300 139

System Encryption Decryption
ElGamal-1024 29,780 15,230
ECC ElGamal-183 (NB) 357 179
ECC ElGamal-183 (PB) 460 212

Tables 5-v. [23]

Comparisons. Elliptic curve operations in NB runs approximately 22% faster 
than PB for encryption, while decryption in NB is approximately 15% faster 
than PB. Overall, the performance of EC ElGamal is much better than 
conventional ElGamal; the improvement in overall speed is over 50% [23].

5. A Survey of Current ECC Applications

When the ECC was first introduced in 1985, there was a lot of skepticism about 
its security. However, ECC has since come a long way. After nearly a decade of 
serious study and scrutiny, ECC has yielded highly efficient and secure. 
Presently, many product vendors have incorporated ECC in their products, and 
this number has only been on the rise. Uncertainty still exists among some 
proponents of traditional cryptographic systems, but they are starting to become 
more accepting of this promising new technology. RSA Security Inc., for 
example, has long voiced concern regarding the security of ECC since its 
introduction. In recent years, however, RSA Security has researched on efficient 
ECC algorithms, and even acquired a patent on a storage-efficient basis 
conversion algorithm. Moreover, it has also integrated ECC into some of its 
products, acknowledging the fact that ECC has begun to establish itself as both 
secure and efficient.

An important factor for this emerging trend is the incorporation of 
ECDSA in several government and major research institution security standards, 
including IEEE P1363, ANSI X9.62, ISO 11770-3 and ANSI X9.63. Another 
factor is the strong promotion of the use of ECC through a Canadian-based 
Certicom Corporation. Certicom is a company that specializes in information 
security solutions in a mobile computing environment through providing 
software and services to its clients. Over the years, Certicom has published 
numerous papers in support of ECC and has also implemented ECC in all of its 
commercial products. Its success prompted many other companies to look more 
closely at the benefits and security of ECC. Now, ECC is becoming the 
mainstream cryptographic scheme in all mobile and wireless devices.

Below is a short survey of ECC applications seen on the market today. 
Results of the survey can be broadly divided into four categories: the Internet, 
smart cards, PDAs and PCs.

Internet

● In September of 2002, SUN Microsystems contributed to the implementation 
of an ECC cryptographic library and also a common hardware architecture 
for accelerating ECC (as well as RSA) to be used in openSSL. OpenSSL is a 
developmental toolkit for the implementation of SSL (Secure Sockets Layer) 



17

and TLS (Transport Layer Security) protocols, which are commonly used 
today in over-the-web transactions and secure document transfers. SUN 
hopes to promote ECC standardization with SSL, which is the dominant 
security protocol used on the web today. 

● In late 1998, the Treasury Department’s Bureau of Engraving and Printing
completed a four-month e-commerce pilot program involving the use of 
smart cards and ECC with SET (Secure Electronic Transaction) 
specifications. SET is a standard that enables secure credit card transactions 
over the Internet. The pilot program tested the use of smart cards, embedded 
with ECC technology, in making online purchases. This program involved a 
total of nine companies, including MasterCard, Certicom (who supplied the 
ECC algorithms), Digital Signature Trust Co. (who supplied the MasterCard 
smart cards) and GlobeSet (a SET vendor), just to name a few. The previous 
version of SET, version 1.0, supports only RSA Data Security encryption 
algorithms, but MasterCard hopes to add ECC to the upcoming version of 
SET.

Smart Cards

Smart cards are one of the most popular devices for the use of ECC. Many 
manufacturing companies are producing smart cards that make use of elliptic 
curve digital signature algorithms. These manufacturing companies include 
Phillips, Fujitsu, MIPS Technologies and DataKey, while vendors that sell these 
smart cards include Funge Wireless and Entrust Technologies. Smart cards are 
very flexible tools and can be used in many situations. For example, smart cards 
are being used as bank (credit/debit) cards, electronic tickets and personal 
identification (or registration) cards.

PDAs

PDAs are considered to be a very popular choice for implementing public key 
cryptosystems because they have more computing power compared to most of 
the other mobile devices, like cell phones or pagers. However, they still suffer 
from limited bandwidth and this makes them an ideal choice for using ECC. In 
the January of 1998, 3Com4 Corporation teamed up with Certicom to implement 
ECC in future versions of its PalmPilot organizer series and Palm Computing 
platform. This new feature will provide protection of confidential information 
on the hand-held organizers, user authentication in wireless communications and 
e-commerce transactions, and also ensure data integrity and proof of 
transactions.

PCs

● Constrained devices have been considered to be the most suitable platforms 
for implementing the ECC. Recently, several companies have created 
software products that can be used on PCs to secure data, encrypt e-mail 
messages and even instant messages with the use of ECC. PC Guardian 
Technologies is one such company that created the Encryption Plus Hard 
Disk and Encryption Plus Email software products. The former makes use of 
both RSA and EC Diffie-Hellman while the latter makes use of a strong 233-
bit ECC key to encrypt its private AES keys.

                                                       
4 Since the 28 July 2000, Palm Inc. has separated from 3Com, and is now a fully 
independent company.



18

● The Top Secret Messenger software was developed by Encryption Software 
Inc. It encrypts the messages of some of the most popular instant messaging 
programs today, like ICQ and MSN. It can also be used with e-mail clients 
such as Microsoft Outlook and Outlook Express to encrypt e-mail messages. 
This product uses both private and public key cryptosystems, including a 
307-bit key for its implementation of the ECC.

6. Conclusion

After examining the security, implementation and performance of ECC 
applications on various mobile devices, we can conclude that ECC is the most 
suitable PKC scheme for use in a constrained environment. Its efficiency and 
security makes it an attractive alternative to conventional cryptosystems, like 
RSA and DSA, not just in constrained devices, but also on powerful computers. 
It is, without a doubt, fast being recognized as a powerful cryptographic scheme. 



19

Appendix A – Formulae for Point Addition

Fields of characteristic p > 3.
Affine Coordinates.
Formula (A-1). Let the elliptic curve E be defined as

E: y2 = x3 + ax + b
with a,b  Fq, q = pn, p a prime > 3. Let P1 = (x1,y1) and P2 = (x2,y2) be points in 
E(Fq) in affine coordinates. Assume that P1, P2  O and P1  P2, then the sum 
P1  P2 = P3 = (x3,y3), where
if P1  P2

 = (y2 – y1) / (x2 – x1) ,
x3 = 2 – x1 – x2 ,
y3 = (x1 – x3) – x3 – y1.

if P1 = P2

 = (x3
1 + a) / 2y1 ,

x3 = 2 – 2x1,
y3 = (x1 – x3) – x3 – y1.

Projective Coordinates.
Formula (A-2). Let the elliptic curve E be defined as

E: y2 = x3 + axz + bz6. 
Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be points in E(Fq) in weighted projective 
coordinates. Assume that P1, P2  O and P1  P2, then the sum P1  P2 = P3 = 
(x3,y3,z3), where
if P1  P2

1 = x1z2
2 ,

2 = x2z1
2 ,

3 = 1 – 2 ,
4 = y1z2

3 ,
5 = y2z1

3 ,
6 = 4 – 5 ,
7 = 1 + 2 ,
8 = 4 + 5 ,
z3 = 3z1z2 ,
x3 = 6

2 – 73
2 ,

9 = 73
2 – 2x3 ,

y3 = (96 – 83
3) / 2.

if P1 = P2

1 = 3x1
2 + az1

4 ,
2 = 4x1y1

2 ,
3 = 8y1

4 ,
z3 = 2y1z1 ,
x3 = 1

2 – 22 ,
y3 = 1(2 – x3) – 3 .

Fields of characteristic 2.
Affine Coordinates.
Formula (A-3). Let the elliptic curve E be defined as

E: y2 + xy = x3 + a2x2 + a6 ,
with a2 + a6  Fq, q = 2n and a6  0. Let P1 = (x1,y1) and P2 = (x2,y2) be points in 
E(Fq) in affine coordinates. Assume that P1, P2  O and P1  P2, then the sum 
P1  P2 = P3 = (x3,y3), where
if P1  P2

 = (y2 + y1) / (x2 + x1) ,



20

x3 = 2 +  + x1 + x2 + a2 ,
y3 = (x1 + x3) + x3 + y1.

if P1 = P2

 = y1 / x1 + x1 ,
x3 = 2 +  + a2 ,
y3 = (x1 + x3) + x3 + y1.

Projective Coordinates.
Formula (A-4). Let the elliptic curve E be defined as

E: y2 + xyz = x3 + a2x2z2 + a6z6. 
Let P1 = (x1,y1,z1) and P2 = (x2,y2,z2) be points in E(Fq) in weighted projective 
coordinates. Assume that P1, P2  O and P1  P2, then the sum P1  P2 = P3 = 
(x3,y3,z3), where
if P1  P2

1 = x1z2
2 ,

2 = x2z1
2 ,

3 = 1 + 2 ,
4 = y1z2

3 ,
5 = y2z1

3 ,
6 = 4 + 5 ,
7 = z13 ,
8 = 6x2 + 7y2 ,
z3 = 7z2 , 
9 = 6 + z3 ,
x3 = a2z3

2 + 69 + 3
3 ,

y3 = 9x3 + 87
2.

if P1 = P2

z3 = x1z1
2 ,

x3 = (x1 + a6z1
2)4 ,

 = z3 + x1
2 + y1z1 ,

y3 = x1
4z3 + x3 .

Cost of Point Addition, characteristic 2.

CoordinatesOperation
affine projective

General addition (a2  0) 1I + 2M + 1S 15M + 5S
Doubling (a2  0) 1I + 2M + 1S 14M + 4S
Doubling 1I + 2M + 1S 5M + 5S

Table A-i. (I = inversion, M = multiplication, S = squaring)[12]



21

Appendix B – Efficient Modular Multiplication using Mersenne 
Primes

Mersenne primes allow for efficient computation of modular arithmetic. 
Suppose we need to compute 

B  A mod m,
given that A < m2. If m is a generalized Mersenne number, B can be expressed 
by sums or differences (mod m) of a small number of terms. 

(Examples shown below are taken from Appendix 6.1 of FIPS 186-2.)

Example 1
Let Curve P-192 be the NIST recommended curve over a prime field where p = 
192. The modulus for this curve can be expressed as 2192 – 264 – 1. Every integer 
A less than p2 can thus be written as

A = A5 × 2320 + A4 ×  2256 + A3 × 2192 + A2 × 2128 + A1 × 264 + A0,

where each Ai is a 64-bit integer. To compute B, evaluate

B := T + S1 + S2 + S3 mod p;

where each 192-bit terms are given by

T = A2 × 2128 + A1 × 264 + A0

S1 = A3 × 264 + A3

S2 = A4 × 2128 + A4 × 264

S3 = A5 × 2128 + A5 × 264+ A5.

Example 2
Let Curve P-224 be the NIST recommended curve over a prime field where p = 
224. The modulus for this curve can be expressed as

A = A13 × 2416 +  A12 × 2384 +  A11 × 2352 +  A10 × 2320 +  A9 × 2288 +  A8 × 2256 +  
A7 × 2224 + A6 × 2192 +  A5 × 2160 +  A4 × 2128 +  A3 × 296 +  A2 × 264 +  A1 × 
232 +  A0,

where each Ai is a 32-bit integer. As a concatenation of 32-bit words, this can be 
denoted by

A = ( A13 || … || A0 ).

To compute B, evaluate

B := T + S1 + S2 - D1 - D2 mod p,

where the 224-bit terms are given by

T  = ( A6  || A5  ||  A4 ||  A3 || A2 ||  A1 || A0 )
S1 = ( A10 || A9  ||  A8 ||  A7 ||  0  ||  0   ||  0  )
S2 = (   0  || A13 || A12 || A11 ||  0  ||  0  ||   0  )
D1 = ( A13 || A12 || A11 || A10 || A9 ||  A8 || A7 )
D2 = (   0  ||   0  ||   0  ||   0  || A13 || A12 || A11)



22

References

1. Menezes, A. J. Elliptic curve public key cryptosystems. Kluwer Academic 
Publishers, 1993.

2. Schneier, B. Applied cryptography. John Wiley & Sons, Inc., 1994.
3. Enge, A. Elliptic curves and their applications to cryptography. Kluwer 

Academic Publishers, 1999.
4. Menezes, A.., Oorschot, P., and Vanstone, S. Handbook of Applied 

Cryptography. CRC Press, 1997.
5. Weisstein, E. W. “Number Field Sieve”. Wolfram Research, Inc. 

<http://mathworld.wolfram.com/NumberFieldSieve.html>
6. Stallings, W. Cryptography and Network Security. Prentice Hall, 2003.
7. Silverman, R. D. “An Analysis of Shamir’s Factoring Device”. RSA 

Security. May 3, 1999 
<http://www.rsasecurity.com/rsalabs/bulletins/twinkle.html>

8. Shamir, A. “Factoring Large Numbers with the TWINKLE Device”. In 
proceedings of Cryptographic Hardware and Embedded Systems: First 
International Workshop, CHES'99. Lecture notes in Computer Science, 
vol.1717. Springer-Verlag Heidelberg, January 1999: p 2 – 12.

9. Lercier, R. Homepage. 
<http://www.medicis.polytechnique.fr/~lercier/english/index.html>

10. Schneier, B. “Elliptic Curve Public Key Cryptography”. Cryptogram E-
Newsletter. November 15, 1999 <http://www.counterpane.com/crypto-
gram-9911.html#EllipticCurvePublic-KeyCryptography>

11. “Remarks on the Security of the Elliptic Curve Cryptosystem”. Certicom, 
whitepaper. September 1997. 
<http://www.certicom.com/research/wecc3.html>

12. Blake, I., Seroussi, G., and Smart, N. Elliptic Curves in Cryptography. 
Cambridge University Press, 1999.

13. Menezes, A., Okamoto, T., and Vanstone, S. “Reducing elliptic curve 
logarithms to logarithms in a finite field”. Proceedings of the twenty-third 
annual ACM symposium on Theory of computing. Annual ACM Symposium 
on Theory of Computing. ACM Press, 1991: p 80 – 89.

14. Satoh, T. and Araki, K. “Fermat quotients and the polynomial time discrete 
log algorithm for anomalous elliptic curves”. Commentarii Mathematici 
Universitatis Sancti Pauli 47, 1998: p 81 – 92.

15. Semaev, I. A. “Evaluation of discrete logarithms in a group of p-torsion 
points of an elliptic curve in characteristic p”. Mathematics of Computation 
67, 1998: p 353 – 356.

16. Smart, N. “The discrete logarithm problem on elliptic curves of trace one”. 
Journal of Cryptography, vol. 12 no. 3. Springer-Verlag New York, 
October 1999: p 193 – 196.

17. Certicom Press Release. “Certicom Announces Elliptic Curve Cryptosystem 
(ECC) Challenge Winner”. November 6, 2002. 
<http://www.certicom.com/about/pr/02/021106_ecc_winner.html>

18. National Institute of Standards and Technology (NIST). Digital Signature 
Standard. Federal Information Processing Standards Publication (FIPS) 
186-2, January 27 2000.

19. Omura, J. and Massey, J. Computational method and apparatus for finite 
field arithmetic. U.S. Patent number 4,587,627, May 1986.

20. Brown, M., Hankerson, D., Lopez, J., and Menezes, A. “Software 
Implementation of the NIST Elliptic Curves over Prime Fields”. In 
proceedings of Cryptographer’s Track at RSA Conference 2001 San 
Francisco. Lecture Notes in Computer Science, vol. 2020. Springer-Verlag 
Heidelberg, January 2001: 250 – 265.

HTTP://MATHWORLD.WOLFRAM.COM/NUMBERFIELDSIEVE.HTML
HTTP://WWW.RSASECURITY.COM/RSALABS/BULLETINS/TWINKLE.HTML
HTTP://WWW.MEDICIS.POLYTECHNIQUE.FR/~LERCIER/ENGLISH/INDEX.HTML
HTTP://WWW.COUNTERPANE.COM/CRYPTO-GRAM-9911.HTML
HTTP://WWW.CERTICOM.COM/RESEARCH/WECC3.HTML
HTTP://WWW.CERTICOM.COM/ABOUT/PR/02/021106_ECC_WINNER.HTML


23

21. Lopez, J. and Dahab, R. “Performance of Elliptic Curve Cryptosystems”. 
Technical report IC-00-08, May 2000. Available at 
<http://www.ic.unicamp.br/reltec-ftp/2000/Titles.html>

22. Boneh, D. and Daswani, N. “Experimenting with electronic commerce on 
the PalmPilot”. In proceedings of Financial Cryptography '99. Lecture 
Notes in Computer Science, vol. 1648. Springer-Verlag Heidelberg, 1999: p 
1 – 16.

23. Li, Z., Higgins, J., and Clement, M. “Performance of finite field arithmetic 
in an elliptic curve cryptosystem”. Ninth Symposium in Modeling, Analysis 
and Simulation of Computer and Telecommunication Systems. IEEE 
Computer Society, 2001: p 249 – 258.

24. Itoh, T., Teecha, O., Tsujii, S. “A Fast Algorithm for computing 
Multiplicative Inverses in GF(2m) using Normal Basis”. Information and 
Computation, vol. 79. Elvisor Academic Press, 1988: p 171 – 177.

HTTP://WWW.IC.UNICAMP.BR/RELTEC-FTP/2000/TITLES.HTML

