
GUITAR AMP
(AutoMatic jfcunit test case Producer)

http://www.cs.umd.edu/~atif/ugprojects/Francis_and_Hackner/GUITAR_AMP.html

Daniel R. Hackner -
dan.hackner@gmail.com

Advisor: Atif M. Memon -
atif@cs.umd.edu

Abstract
 1

Introduction
 1

GUITAR Project
 2

Previous GUITAR Work
 2

GUITAR AMP Addition
 3

Tutorial
 3

Accomplishments
 4

Acknowledgements
 5

References
 5

Example
 5

Abstract
This paper describes a new method of generating test cases for a Java GUI. Many
current methods require cases to be written by hand, or the use of tools that can be
slow and tedious in setup. Our goal was to create a versatile system that can be used
with relatively little setup and configuration.

Introduction
GUITAR is a longstanding project funded by the National Science Foundation with the
goal of alleviating problems generally associated with GUI testing. The GUITAR team
believes that by making GUI testing tools simple to use, we can greatly improve the
quality and process of developing GUIs. The objective of AMP was to seamlessly move
from a proprietary output format into a much more general and accepted form.

mailto:atif@cs.umd.edu
mailto:atif@cs.umd.edu

It is hoped that this transition will encourage more people to use the GUITAR toolset, by
easing the developerʼs transition from current practices to the GUITAR method.

GUITAR Project
Previous GUITAR Work
Originally, GUITAR consisted of four major components: the GUI Ripper, EFG
Generator, Test Case Generator and the Coverage Evaluator. AMP has been added to
complement the original tools.

The GUI Ripper may be the most important element of the GUITAR system; it reverse
engineers the layout of a running GUI in order to ascertain its format. This component
creates an “Integration Tree” of the GUI components, which shows the interrelations of
the components and how they nest within each other. The process consists of
repeatedly traversing through the child windows of the GUI root. A GUI must be ripped
so that the tester can visualize and test the components.

The EFG (event-flow graph) Generator creates a graph from the GUI, which shows all
possible sequences of GUI events that can occur. It is within this stage that the tools
begin to calculate the domain of all component execution sequences. “Once the event-
flow model is created, it can be used to generate a large number of GUI test cases with
very little cost and effort.”1

Figure 1. Event-Flow Graph for WordPad-->ConnectToPrinter2

The Test Case Generator combines the Integration Tree and the Event-Flow Graph to
create tests that manipulate the GUI. These tests are in a proprietary format that can
only be interpreted by GUITAR tools. Test case “paths” are produced via graphing
techniques. The Generator picks random events or edges from the event-flow graph
and searches for the component manipulations that are required to connect them. This
execution path, along with information about the components and how to manipulate
them are written into proprietary cases. The goal of this research was to translate these
cases from the proprietary format into one that is more widely usable.

The Coverage Evaluator is a way for GUITAR to examine the coverage percentage and
usefulness of the test code. It does this through statement coverage, branch coverage
and path coverage reports.

GUITAR AMP Addition
As mentioned above, GUITAR AMP was created to alleviate the limited scope and
compatibility issues of the generated test cases. We decided to create a conversion tool
to transform the proprietary cases into jfcUnit cases. jfcUnit is a GUI testing extension of
the widely used JUnit framework. This change will allow our test cases to be used on
any platform with Java and a few readily available Java extensions. Once AMP is
installed, a user can use the GUITAR suite to create a jfcUnit test suite from a GUI file.

AMP was written primarily in Python because of its superior text parsing tools. A small
portion was written in Java to work in conjunction with jfcUnit. During execution, the
script reads each test case and determines the actions to be performed on each
component. Once all of the appropriate paths have been found, a test case is outputted
with code that invokes the .jar file.

Frequently, necessary components are nested within others and AMP must examine the
GUI rip files in order to add the necessary steps to uncover them. The most trouble lies
within window components because AMP must locate a component that can invoke the
window. If this located component is also not currently available, then AMP must
continue to recurse up the GUI structure until an available component is found.

One of the most important improvements in version 2.0 of the software was the creation
of the “UnnamedFinder.java”. Previously, the tools could only manipulate components
that developers had named. This proved to be a problem with textboxes and other
components that were frequently unnamed. Since many test cases require input to
textboxes, the tests would fail because the components could not be found without
names. The new unnamed component finder allows AMP to identify components based
on class, window depth and container. Now that the unnamed component finder has
been added to AMP, the outputted jfcUnit cases are significantly more complete,
rendering fewer false positives for bugs.

Tutorial
Visit http://www.cs.umd.edu/~atif/GUITARWeb/ for instructions on how to use GUITAR.

Pre-Run Warning: These directions should all be run atomically on the same system.
GUITAR generated files from Windows platforms are likely to not work with AMP on
Unix platforms, as the systemʼs built-in GUI components are different.

http://www.cs.umd.edu/~atif/GUITARWeb/
http://www.cs.umd.edu/~atif/GUITARWeb/

1) Locate the .jar file for the software to be tested.
2) Run GUITAR on the .jar file and get a .gui rip file as well as a set of .tst files.
3) Pick the .tst file to be converted into jfcUnit
 .
4) Install Python 2.5 or above. Install JUnit and JFCUnit.
5) Run AMP using the command flags as noted in the software. As of version 2.0 use
the following:
Command line args (Strings must be in quotes):
"--testSuite": Mandatory. A full path to the location of the .tst test suite file
"--gui": Mandatory. A full path to the .gui rip file
"--jarPath": Mandatory. A full path to the .jar file
"--package": Optional. If provided, all created files will be made in the provided package
"--kill": Optional. Use this to signal that there are initial popups which appear upon
opening this application (such as a version notification).
"--debug": Optional. Gives debugging output.
"--multiPath": Optional. Searches for all possible paths to a GUI component.
Significantly slower to generate the test cases, but can result in slightly more optimal
paths.

Example run flag input on a Unix system:
--kill=1
--package="crosswordsage"
--jarPath="/Users/dhackner/Documents/workspace/CrosswordSage.jar"
--testSuite="/Users/dhackner/Documents/workspace/100.tst"
--gui="/Users/dhackner/Documents/workspace/crosswordsageGUI.gui"

This will output into the .jarFileNamejfcUnitTests folder.

6) Check that the Java Build Path of the project which contains the generated jfc files
has JUnit, JFCUnit and the path of the .jar file in test.
7) Execute the .java file as a JUnit test.

Accomplishments
Version 2.0 of the software has recently been completed, and will be integrated with the
full GUITAR project in the near future. A research paper on GUITAR AMP was
presented at the 2008 International Conference on Software Engineering in Leipzig,
Germany. There was a great deal of interest shown in the tool, as well as in the future of
the entire project.

Acknowledgements
I would like to express thanks to Xun Yuan and Jaymie Strecker for their help, as well as
the rest of the GUITAR team for providing me with the tools to base this work on.

References
[1] “An event-flow model of GUI-based applications for testing” by Atif M. Memon.
Software Testing, Verification and Reliability, vol. 17, no. 3, 2007, pp. 137-157, John
Wiley and Sons Ltd.. http://www.cs.umd.edu/~atif/papers/MemonSTVR2007.pdf

[2] http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_efg.htm

Example
The following is an example test for the open source application “crosswordsage” (http://
crosswordsage.sourceforge.net/), generated by version 2.0 of the tool. It works
alongside UnnamedFinder.java

import java.util.jar.*;
import javax.swing.*;
import junit.extensions.jfcunit.*;
import junit.extensions.jfcunit.finder.*;
import junit.extensions.jfcunit.eventdata.*;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

public class CrosswordSagejfcUnitTest_50 extends JFCTestCase
{
 private JFCTestHelper helper = null;

 public CrosswordSagejfcUnitTest_50(String name)
 {
 super(name);
 }

 private void callMainMethodOfJarFile(String jarName) throws
ClassNotFoundException, NoSuchMethodException, IllegalAccessException,
InvocationTargetException, FileNotFoundException, IOException

http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_efg.htm
http://www.cs.umd.edu/~atif/GUITARWeb/guitar_process_efg.htm
http://crosswordsage.sourceforge.net
http://crosswordsage.sourceforge.net
http://crosswordsage.sourceforge.net
http://crosswordsage.sourceforge.net

 JarInputStream jarIn = new JarInputStream(new FileInputStream(jarName));
 Manifest manifest = jarIn.getManifest();
 if (manifest == null) {System.err.print(jarName + " does not have a manifest file.");}
 Attributes a = manifest.getMainAttributes();
 String mainClass = a.getValue("Main-Class");
 Class cl = Class.forName(mainClass);
 Class[] argTypes = {String[].class};
 Method main = cl.getDeclaredMethod("main", argTypes);
 main.invoke(null, ((Object)new String[0]));
 }

 protected void setUp() throws Exception
 {
 super.setUp();
 setHelper(new JFCTestHelper()); // Uses the AWT Event Queue.
 callMainMethodOfJarFile("/Users/dhackner/Documents/workspace/GUITAR
Research/CrosswordSage.jar");
 flushAWT();
 java.util.List list = new DialogFinder(null).findAll();
 for(int i = 0; i < list.size(); i++) //close all windows beyond the first one
 {
 getHelper().disposeWindow((JDialog)list.get(i), this);
 }
 }

 protected void tearDown() throws Exception
 {
 super.tearDown();
 flushAWT();
 }

 public void test50() throws Exception
 {
 JMenuItemFinder jmenuitemFinder = new JMenuItemFinder("", true);
 JMenuItem jmenuitemComponent;

 UnnamedFinder unnamedFinder = new UnnamedFinder("", true);
 java.awt.Component component;

 AbstractButtonFinder jbuttonFinder = new AbstractButtonFinder("", true);
 JButton jbuttonComponent;

 jmenuitemFinder.setText("File");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenu called File!", jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 jmenuitemFinder.setText("New Crossword");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenuItem called New Crossword!",
jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 unnamedFinder.setStats(0, "BasicOptionPaneUI$MultiplexingTextField", "Input");
 component = (java.awt.Component) unnamedFinder.find();
 assertNotNull("Could not find a BasicOptionPaneUI$MultiplexingTextField called
AutoText!", component);
 getHelper().sendString(new StringEventData(this, component, "5"));

 jbuttonFinder.setText("OK");
 jbuttonComponent = (JButton) jbuttonFinder.find();
 assertNotNull("Could not find a JButton called OK!", jbuttonComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, jbuttonComponent));

 jmenuitemFinder.setText("Edit");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenu called Edit!", jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 jmenuitemFinder.setText("Split Word");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenuItem called Split Word!",
jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 unnamedFinder.setStats(0, "BasicOptionPaneUI$MultiplexingTextField", "Input");
 component = (java.awt.Component) unnamedFinder.find();
 assertNotNull("Could not find a BasicOptionPaneUI$MultiplexingTextField called
AutoText!", component);
 getHelper().sendString(new StringEventData(this, component, "5"));

 jbuttonFinder.setText("OK");
 jbuttonComponent = (JButton) jbuttonFinder.find();
 assertNotNull("Could not find a JButton called OK!", jbuttonComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this, jbuttonComponent));

 jmenuitemFinder.setText("File");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenu called File!", jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 jmenuitemFinder.setText("Save Crossword");
 jmenuitemComponent = (JMenuItem) jmenuitemFinder.find();
 assertNotNull("Could not find a JMenuItem called Save Crossword!",
jmenuitemComponent);
 getHelper().enterClickAndLeave(new MouseEventData(this,
jmenuitemComponent));

 unnamedFinder.setStats(12, "MetalFileChooserUI$3", "Save");
 component = (java.awt.Component) unnamedFinder.find();
 assertNotNull("Could not find a MetalFileChooserUI$3 called AutoText!",
component);
 getHelper().sendString(new StringEventData(this, component, "5"));

 }//end of function

}//end of testCase

