
Decision Trees

Katrina LaCurts

September 13, 2007

1 Introduction

A decision tree is a model used for determining the output of a boolean function. A decision tree
typically reads one bit of the input and then makes a decision based on whether that bit is 0 or 1.
It continues to read bits in this manner until it has enough information to evaluate the function.
This model naturally lends itself to a visual representation as a binary tree.

Complexity classes on decision trees are not the same as the standard complexity class on a Turing
Machine model. For example, it is fairly easy to show that the decision tree P is not equal to
the decision tree NP. This unfortunately does not lead us to the conclusion that P 6=NP on Turing
Machines. In this paper, when we speak of classes like P and NP, we really mean decision tree P
and decision tree NP.

We are measuring decision tree complexity in terms of the number of leaves. Another way to
measure this complexity is depth of the tree, which is equivalent to the number of variables read.
While this has some “practical” application 1, it doesn’t generalize well to defining complexity
classes. For one, we clearly couldn’t define P as “functions with a polynomial number of variables
read.” Assuming we have infinite memory (and hence only need to read a variable once), all
functions would then be in P. We could define P as poly-log depth, but there is not a lot that one
can do in poly-log depth.

2 Preliminaries

Definition. A boolean function is in P if it can be solved by a decision tree with a polynomial
number of leaves.

Definition. A boolean function is in NP if it can be solved by a forest of polynomial-leaved trees.

We can take two trees T1 and T2 and combine them. For every leaf of T1 that evaluates to 0, attach
tree T2 to it. We will refer to this as the combined tree of T1 and T2.

Definition. The combined tree of two decision trees T1 and T2 is the tree gotten by adjoining tree
T2 to every leaf of T1 that evaluates to 0.

Product Theorem. Given two decision trees T1 and T2, the number of leaves in their combined

tree is ≤ L1 ∗ L2, where L1 is the number of leaves in T1 and L2 is the number of leaves in T2.

1Saks, Wigderson, “Probabilistic Boolean Decision Trees and the Complexity of Evaluating Game Trees”

1

Proof. T1 cannot have more than L1 leaves that evaluate to 0. For each of these leaves, we gain L2

new leaves by attaching T2. Thus, the total number of leaves is (number of 0-leaves in T1) ∗ (L2) ≤
L1 ∗ L2.

Corollary. If we have a problem that can be by a forest consisting of a constant number of

polynomial-leaved decision trees, it is in P.

Proof. Let T1, T2, . . . , Tk be the trees which solve a boolean function f , and let L1, L2, . . . , Lk be
their respective numbers of leaves. By the Product Theorem and by induction, the total number
of leaves in the combined tree is ≤ L1 ∗L2 . . . ∗Lk. Since each Li is a polynomial, the product is a
polynomial. Hence the combined tree is in P and thus f is.

3 NP = Everything

In the Turing Machine model of complexity, there are quite a few classes “bigger” than NP. This
is not the case when considering decision trees. In fact, we have the following theorem.

Theorem. NP contains every boolean function.

Proof. Consider a boolean function f on n variables and its corresponding truth table. We can
convert its truth table into a DNF formula, with each clause being a line in the truth table. Since
there are n variables, we will get 2n clauses, each containing all of the n variables (either as-is
or negated). We can compute this by making a decision tree for each clause. This decision tree
has O(n) leaves. There are 2n such trees, and hence we have a forest of polynomial-leaved trees.
f ∈ NP .

4 P 6= NP

Is NP = P in terms of decision trees? We present two examples to show that it’s not.

4.1 Example 1

Consider (x1 ∨ x2 ∨ · · · ∨ x√
n) ∧ (x√

n+1 ∨ · · · ∨ x2
√

n) ∧ · · · ∧ (x(
√

n−1)
√

n+1 ∨ · · · ∨ xn). That is, a
CNF formula on n variables broken up into

√
n blocks of size

√
n. We claim that this is not in P.

In particular, we claim that each path down the tree must be at least
√

n long.

Proof. Suppose there exists a path with <
√

n variables read. There are two cases.

1. The decision tree claims that this path evaluates to 0. For the function to evaluate to 0, we
must have all of the variables in one block be 0. Since there are

√
n variables in each block, the

decision tree could not have checked them all, and thus be sure that the path evaluates to 0.
2. The decision tree claims that this path evaluates to 1. For the function to evaluate to 1, we
must have at least one variable from each block be 1. Since there are

√
n blocks, the decision tree

could not have checked them all, and thus can’t be sure that the path evaluates to 1.

Each case leads to a contradiction and so each path in the tree must be at least
√

n long.

By forcing each path to be at least
√

n long means that any decision tree for this problem will
have Ω(2

√
n) leaves. 2

√
n is not a polynomial. This problem is in NP, however, as we showed in the

previous section. Thus, P 6= NP.
2

Notice that our decision tree may be redundant in the sense that we may read the same variable
more than once in the tree. For example, we can imagine the following tree for our function.

2

1 0

x1

1 0

1 0

xsqrt(n)

x

The tree simply reads each variable in the first block until it finds a variable that evalutes to 1. It
then moves onto the second block, and so forth. Each box in the figure represents the tree moving
onto the next block in the CNF formula. The first step in each block, then, will be to read x√

n+1.
This presents no problem for us, but it does mean that we might want to look into this problem in
a branching program context.

4.2 Example 2

Consider (x1 ∧ x2 ∧ · · · ∧ x√
n) ∨ (x√

n+1 ∧ · · · ∧ x2
√

n) ∨ · · · ∨ (x(
√

n−1)
√

n+1 ∧ · · · ∧ xn). This is the
DNF analog of example 1. As in the previous example, our strategy still forces each branch in the
tree to be O(

√
n). Thus, there are at least Ω(2

√
n) leaves. This example is not in P.

These two problems provide a good example of why we’re not measuring complexity in terms of
number of variables read. Consider x1 ∧ x2 ∧ . . . ∧ xn vs. example 1. Clearly this is in P. In both
cases, however, we need to read all of the variables. If we were to measure complexity in terms of
number of variables read, these two problems would be in the same class despite example 1 being
an intuitively “harder” problem.

4.3 Generalization

Both of these examples generalize nicely. We’ll consider only the first one (the CNF formula), but
the second example is analogous.

Consider a CNF formula with n variables divided into b blocks of size s. First of all, we can
immediately see that n = b ∗ s and thus b = n/s.

Theorem. Any decision tree for this problem will have Ω(2min(b,s)) = Ω(2min(s,n/s)) leaves.

Proof. As we discussed in the proof in example 1, in order for a tree to evaluate to 0, we must have
all of the variables in one block be 0 and thus must read at least s variables. In order for a tree to
evaluate to 1, we must have at least one variable in each block be 1, and thus must read at least b
variables. Each branch in any decision tree must then have Ω2min(s,b) leaves.

Corollary. We can generate a function that can be solved by an Ω(2nǫ
) leaves for any 0 < ǫ ≤ 1

2 .

Proof. In our previous example, let s = nǫ. Then b = n/s = n1−ǫ. Our tree then has Ω(2min(nǫ,n1−epsilon)).
If ǫ ≤ 1

2 , our tree has Ω(2nǫ
) leaves.

3

5 NP ∩ co-NP * P

In terms of decision trees, NP ∩ co-NP * P. We present a more in-depth analysis of the proof given
by Jukna et. al2. It is known that a boolean function in n variables has a decision tree of size
2O(log n log2 N) where N is the total number of clauses (monomials) in the minimal DNFs for f and
¬f (size still being the number of leaves in the tree). What we want to show is that this bound
is tight up to the log n factor. In particular, we’ll show that MAJ3 requires a decision tree of size
2Ω(log1.58 N).

Definition. MAJ3 is the iterated function in which each gate has three inputs and outputs the
majority bit of the three inputs.

Definition. Let Fh be the monotone function in n = 3h variables computed by a balanced read-
once formula of height h in which every gate is MAJ3.

Definition. Let DNF(f) denote the minimum number of monomials in a DNF for f .

Definition. ‖Fh‖ =DNF(Fh) + DNF(¬Fh).

Theorem. dt(Fh) ≥ 2logγ Nh where Nh = ‖Fh‖ and γ = log2 3 ≈ 1.58.

Clearly this theorem leads us to our desired conclusion, that MAJ3 requires a 2Ω(log1.58 N) sized
decision tree.

Notice that DNF(F0) = 1, since F0 is just one variable. Also notice that DNF(Fh) = 3*DNF(Fh−1)
2.

DNF(Fh) = DNF(Fh−1) ∧ DNF(Fh−1) ∧ DNF(Fh−1), so this explains the 3*DNF(Fh−1).
Each DNF(Fh−1) is a collection of ands of ors, so we use the distributive law to transform
them into a collection of ors. This is where we get DNF(Fh−1)

2.

Furthermore, Fh is self-dual; that is, DNF(Fh)=DNF(¬Fh).

Using this fact, we have Nh = 2 ∗ 32h−1 (This is easily verifiable) and then n = 3h = Θ(logγ Nh)
(Also easily verifiable). Now that we can describe n in terms of Nh, we turn to the following lemma.

Lemma. dt(f) ≥ 2|S| ∗
∑

T⊇S

|f̂h(T)| where S ⊆ [n], and f̂h(T) is the T th Fourier coefficient.

We’re going to take this lemma on faith and apply it to S = [n]. We then have that dt(f) ≥
2n|f̂h([n])|. Now we would like to get a bound on |f̂h([n])|.

Let ah = F̂h([n]). a0 = 1 since F0 is just one variable. Now we’re going to switch from {1,0}
notation to {-1,+1} notation, where -1 indicates a true value. Notice that

MAJ3(x1, x2, x3)=(x1 + x2 + x3 − x1x2x3)/2.

Fh =MAJ3(F
(1)
h−1, F

(2)
h−1, F

(3)
h−1) where each F

(i)
h−1 is on a disjoint set of variables.

Then Fh = 1
2(

3∑

v=1

F
(v)
h−1 −

3∏

v=1

F
(v)
h−1). This is just utilizing the previous formula. The summation

term does not dominate since Fh−1 depends on fewer than n = 3h variables. So now we have an =

−1
2 ∗ a3

h−1. Solving the recurrence we get ah = (−1)h ∗ (1
2)

n−1

2 . Then dt(Fh) ≥ 2n ∗ (1
2)

n−1

2 ∈ Ω(2n),
which is what we wanted.

2Jukna, Razborov, Savicky, Wegener “On P versus NP∩co-NP for Decision Trees and Read-once Branching Pro-

grams”
4

6 Open Questions

• Are there problems with log n decision trees in their forest that are not in P?

• Do more leaves help? That is, are we better off with more trees for a problem, or with more
leaves in a tree. Give the Product Theorem, does this even matter?

• Is RandP = P? If we measure complexity in terms of the number of variables read, the two
classes are equal3.

• Does the decision tree P correspond to a known class in terms of Turing Machines?

3Nisan, “CREW PRAMs and Decision Trees”
5

