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Abstract

Clustering is a common problem in the analysis of large data sets. Streaming algorithms, which make
a single pass over the data set using small working memory and produce a clustering comparable in cost to
the optimal offline solution, are especially useful. We develop the first streaming algorithms achieving a
constant-factor approximation to the cluster radius for two variations of the k-center clustering problem.
We give a streaming (4 + ε)-approximation algorithm using O(ε−1kz) memory for the problem with
outliers, in which the clustering is allowed to drop up to z of the input points; previous work used a
random sampling approach which yields only a bicriteria approximation. We also give a streaming (6+ε)-
approximation algorithm using O(ε−1 ln(ε−1)k + k2) memory for a variation motivated by anonymity
considerations in which each cluster must contain at least a certain number of input points.
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1 Introduction

Clustering is a common problem arising in the analysis of large data sets. For many applications in
document and image classification [3, 9, 13, 15, 16] and data mining, clustering plays a central role [5].
In a typical clustering problem, we have a set of n input points from an arbitrary metric space (with a
distance function satisfying the triangle inequality) and wish to partition the points into k clusters. We
select a center point for each cluster and consider the distance from each point to the center of the cluster
to which it belongs. In the k-center problem, we wish to minimize the maximum of these distances, while
in the k-median problem, we wish to minimize their sum. In this paper we focus on k-center clustering,
since it is an important problem for which a variety of approaches have been presented. Hochbaum and
Shmoys [14] and Gonzalez [10] developed algorithms that achieve a factor 2 approximation in the cluster
radius. This is the best possible since one can show by a reduction from the dominating set problem that
it is NP -hard to approximate k-center with factor 2− ε for any ε > 0.

In the analysis of extremely large data sets, it is not possible to hold the entire input in memory at
once. Thus, we consider the streaming or incremental model in which the algorithm reads input points one
by one and maintains a valid clustering of the input seen so far using a small amount of working memory.
(We contrast such algorithms with offline algorithms that use memory polynomial in the size of the input.)
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Charikar, Chekuri, Feder and Motwani [5] introduced the incremental model for the k-center problem
and gave a very elegant “Doubling Algorithm” that achieves a factor 8 approximation using only O(k)
memory. The result is slightly surprising, since it is not obvious at all how to do this incrementally. The
key idea is to maintain a lower bound on the radius of an optimal solution. For example, after k+ 1 input
points have been presented, examining the closest pair of points gives us an obvious lower bound on the
optimal radius, since at least two of these points must belong to the same cluster.

The key focus of this paper is to deal with outliers, an issue originally raised in [7]. Data is often
noisy and a very small number of outliers can dramatically affect the quality of the solution if not taken
into account, especially under the k-center objective function, which is extremely sensitive to the existence
of points far from cluster centers. The formal definition of the problem is as follows: group all but z points
into k clusters, minimizing the radius of the largest cluster. An offline factor 3 approximation for the
outlier version was developed [7]; it greedily chooses clusters of a certain radius so as to cover as many
new input points with each cluster as possible. The factor 3 assumes that we can enumerate all center
points in the metric space that the optimal clustering is allowed to use. If not, the algorithm is easily
modified to produce a clustering that uses only input points as centers but has radius at most 4 times
that of an optimal clustering with unrestricted centers.1 The same paper also considered the k-median
objective function and developed a bicriteria algorithm: if there exists a solution of cost C that drops z
outliers, it finds one of cost at most O(C) that drops at most O(z) outliers. More recently, a polynomial
time algorithm has been developed for k-medians that delivers a solution of cost O(C) while dropping only
z outliers [8].

The offline algorithm for k-center clustering with outliers is not easily adapted to the streaming model
because it relies on the ability to count the input points that would be covered by a potential cluster, which
is difficult to implement without having the entire data set in memory. In general, dealing with outliers
in the streaming model is quite tricky because we have no way to know, as points arrive, which should
be clustered and which are outliers. This problem was first considered by Charikar, O’Callaghan and
Panigrahy [6], who developed a streaming-model bicriteria approximation for the k-center problem (see
also [12]). Their approach is based on taking a random sample of the data set that is small enough to fit in
memory and running the offline algorithm [7] on the sample. They then prove that, with high probability,
the set of clusters found for the sample is also a good solution for the entire data set. This construction
preserves the radius approximation factor of the underlying offline algorithm (3 or 4) but increases the
number of outliers to (1 + ε)2z. The sample has size roughly O(ε−2kn/z), where n is the data set size.
Therefore, the sampling approach is good when z is linear in n and a slight increase in the number of
outliers is acceptable; otherwise, it requires an unreasonable amount of memory.

We present a streaming algorithm for k-center clustering with outliers that is in several ways comple-
mentary to that of [6]. Our deterministic algorithm is based on the Doubling Algorithm [5] and also uses
the offline algorithm for outliers [7] as a subroutine. It increases the radius approximation factor to 3+ ε or
4 + ε but meets the outlier bound z exactly; as far as we are aware, it is the first streaming constant-factor
approximation with the latter property. Our algorithm uses O(ε−1kz) memory, so it is suitable when z is
small and an additional slight increase in the cluster radius is acceptable.

Bădoiu et al. [4] present a sampling-based algorithm for k-center clustering with outliers that uses
coresets, and Agarwal et al. [1] present an algorithm for shape-fitting with outliers that may be applicable
to k-center clustering. However, both techniques work only in Euclidean spaces Rd; furthermore, the first
has running time exponential in k and the second requires multiple passes over the input.

Other recent applications of k-center clustering (with and without outliers) for the purposes of
anonymity are considered in [2], but the algorithms given there do not work in the streaming model.
We present a streaming (6 + ε)-approximation algorithm for the k-center clustering problem with a lower

1We simply expand the disks Gi to radius 2r and the disks Ei to radius 4r.
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bound b on the number of points per cluster. The precise requirement is that it must be possible to allocate
each input point to a center within the appropriate radius so that each center gets at least b points, i.e.,
centers cannot meet the bound by sharing points.

2 Improving streaming algorithms by parallelization

In this section, we develop a parallelization construction that improves the approximation factor of the Dou-
bling Algorithm to 2+ε while increasing the running time and memory usage by a factor of O(ε−1 ln(ε−1)).2

We first generalize the Doubling Algorithm to a “Scaling Algorithm” based on a parameter α > 1 that
maintains a lower bound r on the radius of the optimal cluster and raises it by a factor of exactly α at
a time. As it reads points, this algorithm keeps centers separated by at least 2αr and ensures that every
input point seen so far is within ηr = (2α2/(α− 1))r of a center. Let r∗ denote the optimal radius, and let
r0 be half the least distance between two of the first k+ 1 distinct input points, which is used to initialize
r.

Naively, the Scaling Algorithm is an η-approximation because it gives us a solution with radius within
a factor η of its own lower bound r, and we minimize η = 8 by choosing α = 2. But observe that if
r∗ = 1.9r0, we get lucky: the algorithm cannot raise r to 2r0 because 2r0 is not a lower bound on r∗, so it
is obliged to return a solution with radius at most 8r0, which is only a factor of about 4.2 from optimal.

To ensure that we always get lucky in this way, we run m instances of the Scaling Algorithm in
parallel (feeding each input point to each instance) with interleaved sequences of r values. Specifically,
we initialize the r value of the ith instance (i = 1, . . . , m) to α(i/m)−1r0 so that the instance takes on
the r values αt+(i/m)−1r0, where t = 0, 1, . . . . Consequently, any desired r of the form α(j/m)−1r0 for a
positive integer j will eventually be taken on by some instance. Letting j be the smallest integer greater
than m logα(r∗/r0), we have αj/mr0 > r∗, so the instance that takes r = α(j/m)−1r0 will be unable to raise
r again and thus will return a solution whose radius R is at most ηα(j/m)−1r0. And by our choice of j,
α(j−1)/mr0 ≤ r∗, so R ≤ ηα(1/m)−1r∗. Therefore, by taking the best solution produced by any of the m
instances, we achieve a factor (η/α)m

√
α approximation.

Substituting the expression for η, the approximation factor of the parallelized algorithm becomes
2(1 + 1/(α− 1))m

√
α. Now, we want α large to make 1/(α− 1) small; intuitively, with larger α, accounting

for previous rounds across an increase of r costs less in the Scaling Algorithm’s approximation factor. We
also want m large to keep m

√
α close to 1. Letting α = O(ε−1) and m = O(ε−1 ln(ε−1)) gives a factor of

2 + ε. This approximation factor is essentially the best we can hope for since the best offline algorithms
[14, 10] are 2-approximations, but there may be a better construction that uses less time and memory. We
will apply the same parallelization construction to the streaming-model clustering algorithms described in
the following sections.

2.1 Suitability of parallelized algorithms

The original model of Charikar et al. [5] requires that a clustering algorithm maintain a single clustering
of the input points read so far and modify it only by merging clusters. This model has the advantage
that a forest describing the merges can be incrementally written to secondary storage; the forest can
later be traversed to enumerate the input points in any desired output cluster without a second pass over
the entire input. Parallelized algorithms do not fit this model because they maintain many clusterings
and do not choose one until the end. (This is why they do not contradict the lower bound of 1 +

√
2

on the approximation factor in [5].) Writing out a forest for each of the many partial clusterings under
2Sudipto Guha independently discovered a similar construction [11] based on Gonzalez’s algorithm [10]; it also yields a

streaming (2 + ε)-approximation algorithm for k-center clustering.
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consideration may be impractical. However, parallelized algorithms are still useful when the goal is only
to produce statistics for each output cluster (along with the centers themselves) because the statistics can
be maintained independently for each partial clustering.

3 Clustering with outliers

In this section, we develop a streaming algorithm for k-center clustering with z outliers that achieves
a constant factor approximation to the cluster radius using O(kz) memory. We then parallelize it to
a (4 + ε)-approximation using O(ε−1kz) memory. The essential difficulty in designing a deterministic
streaming algorithm for clustering with outliers is that it is dangerous to designate an input point as a
cluster center and start forgetting nearby points because they could all be outliers and the center might be
needed to cover points elsewhere. Our algorithm overcomes the difficulty by delaying the decision as long
as necessary. Specifically, it accumulates input points (remembering all of them) until it sees z + 1 points
close together. These cannot all be outliers, so it creates a cluster for them and only then can safely forget
any later points that fall in that cluster.

The algorithm’s state consists of:

• some number ` ≤ k of stored cluster centers, each of which carries a list of z + 1 nearby “support
points” from which it was originally formed;

• some “free points” that do not fall into existing clusters but cannot yet be made into new clusters
because they might be outliers; and

• a lower bound r on the optimal radius, as in the Doubling Algorithm.

The algorithm ensures that clusters of radius ηr at the ` stored centers cover all forgotten points, and it
checks after processing each input point that it can cover all but at most z of the free points with k − `
additional clusters of radius ηr. Thus, whenever the algorithm encounters the end of the input, it can
produce a solution with radius ηr. The algorithm is based on parameters α, β, and η, which we will choose
later to optimize the approximation factor; for the proof of correctness to hold, these parameters must
satisfy some constraints that we will state as they arise.

The algorithm is designed so that, whenever its partial solution with radius ηr becomes invalid, it
can establish a new lower bound αr on the optimal radius, raise r by a factor of α, and adapt the partial
solution to the new value of r; this process is repeated until the validity of the partial solution is restored.
Furthermore, we will show that the algorithm will never store more than O(kz) free points at a time,
establishing the memory requirement.

As in the Doubling Algorithm [5], we need a certain separation between centers in order to raise r.
To this end, we say that two distinct centers conflict if some support point of the first is within distance
2αr of some support point of the second.

Algorithm 3.1 (Clustering with outliers). Peek at the first k + z + 1 distinct input points, initialize r
to half the least distance between any two of those points, and start with no cluster centers and no free
points. Then read the input points in batches. Batches of size kz appear to give the best trade-off between
running time and memory usage, but a different size can be used if desired. For each batch, add the points
as free points and then perform the following procedure:

1. Drop any free points that are within distance ηr of cluster centers.

2. If some free point p has at least z + 1 free points within distance βr (including itself), then add p as
a cluster center, choosing any z + 1 of the free points within distance βr as its support points, and
repeat from step 1. If no such p exists, proceed to the next step.

4
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Figure 1: Example of clustering with outliers.

3. Let ` be the number of stored cluster centers. Check that ` ≤ k and that at most (k − `)z + z free
points are stored. Run the 4-approximation offline algorithm for k-center clustering with outliers
(see the Introduction) to attempt to cover all but at most z of the free points using k − ` clusters of
radius ηr. If the checks and the offline algorithm both succeed, processing of the current input batch
is complete. Otherwise, set r ← αr and continue to the next step.

4. Unmark all the stored centers and then process them as follows: while there exists an unmarked
center c, mark c and drop any other centers that conflict with c with respect to the new value of r.
When a center is dropped, its support points are forgotten. (Note that once a center c is marked, it
cannot later be dropped on account of another center c′ because c′ would already have been dropped
on account of c.) Repeat from step 1.

When the end of the input is reached, return clusters of radius ηr at the stored centers plus the clusters
found by the last run of the offline algorithm.

Figure 1 shows an intermediate state of the algorithm on a data set with k = 3 and z = 4. The
algorithm is storing ` = 2 cluster centers c1 and c2, and each center has z+1 = 5 support points (including
itself), which are within βr of it. Several other input points within distance ηr of the centers have been
forgotten. The algorithm is also storing seven free points, including f1, which would be converted to a
cluster center if there were just one more free point inside circle ω; but as it stands, the algorithm cannot
rule out the possibility that all four of the points in ω are outliers. The offline algorithm found the cluster
Γ (centered at f1), which covers all but 2 ≤ z of the free points; if we combine it with the stored centers,
we have a valid clustering of radius ηr for the input points seen so far.

Notice that the three support points A are just far enough from the support points B to avoid a
conflict. If they were any closer, then the optimal solution could conceivably cover all six points with
a single cluster of radius αr and leave the remaining four support points as outliers, and the proof of
correctness of the algorithm’s decision to set r ← αr (see Lemma 3.2(e) below) would fail.
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Suppose several free points arrive inside Γ but outside ω. The current clustering covers these points,
but if the algorithm allowed them to accumulate indefinitely, it would violate the O(kz) memory bound.
Thus, when the number of free points exceeds (k−`)z+z = 8, the algorithm raises r on the following logic:
in the optimal solution, two clusters are busy covering support points of the stored centers, and there is
no way a third cluster of radius αr containing at most z = 4 points can cover all the free points with at
most 4 outliers. (If there were a potential third cluster of more than 4 points, the algorithm would already
have recognized it in step 2.) Once r is raised, the support points A and B conflict, so one of the centers
c1, c2 subsumes the other in step 4.

Lemma 3.2. The algorithm maintains the following invariants:

(a) Every time step 1 completes, the remaining free points are at least distance ηr from cluster centers.

(b) Each stored center has z + 1 support points within distance βr of it.

(c) No two stored cluster centers conflict.

(d) Every input point the algorithm has read so far either is a free point or is covered by a cluster of
radius ηr at a stored center.

(e) The optimal clustering for the input points the algorithm has read so far requires a radius of at least
r.

Proof. (a) is obvious. (b) is checked when a center is added and remains true when r increases.
To prove (c), we place the constraint η ≥ 2α + β on our later choice of the parameters. With this

constraint, addition of a center c in step 2 preserves the invariant. For if s1 is a support point of an existing
center c1, then s1 is within βr of c1, which is at least ηr from c’s support points (since they were previously
free points). By the triangle inequality, s1 is at least distance ηr − βr ≥ 2αr from c’s support points, so
no conflict results. Furthermore, temporary conflicts created by an increase in r are removed in step 4.

Each point the algorithm reads is initially a free point, so the algorithm endangers invariant (d) only
when it drops free points or centers. Free points dropped in step 1 are covered by stored centers, so they
do not break the invariant. Steps 3 and 4 effectively drop some clusters while expanding the remaining
ones to radius ηαr; we must show that any input point that was covered by a dropped cluster before the
change is covered by an expanded cluster afterwards. To this end, we constrain η+ 2α2 + 2β ≤ ηα. Let r0
and r1 = αr0 denote the old and new values of r, respectively. Consider an input point p that was covered
by a dropped center c, meaning that it was within distance ηr0 of c. c was dropped when a conflicting
center c′ was marked. The support points causing the conflict were within distance 2αr1 of each other and
distance βr0 of their respective centers, so the distance from p to c′ is at most

ηr0 + βr0 + 2αr1 + βr0 = (η + 2α2 + 2β)r0 ≤ ηαr0 = ηr1.

Thus, p is covered by c′, and the invariant holds.
Invariant (e) is established by the initial setting of r because one of the k clusters of the optimal

solution must cover two of the first k + z + 1 distinct input points. To show that increases in r maintain
the invariant, we will show that, if step 3 is reached and the optimal clustering C∗ for the input read so
far has radius less than αr, then the algorithm does not set r ← αr.

Let c be a stored cluster center. C∗ cannot designate all z+1 of c’s support points as outliers, so some
cluster c∗ ∈ C∗ must cover one of c’s support points; we say that c∗ bites c. No two stored cluster centers
conflict, so no cluster of C∗ (having diameter less than 2αr) can bite two of them; thus, each stored cluster
center is bitten by a different cluster of C∗. In particular, this means ` ≤ k. Similarly, by invariant (a) and
our assumption that η ≥ 2α + β, no cluster of C∗ can both bite a stored cluster center and cover a free
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point. Finally, we constrain β ≥ 2α; then no cluster of C∗ can cover z + 1 or more free points because, if
it did, each of those free points would be within distance βr of all the others and they would have become
the support points of a cluster center in step 2.

Now, at least ` of the clusters of C∗ are devoted to biting stored cluster centers, so at most k − `
clusters can cover free points; let F ∗ be the set of these clusters. In order for C∗ to be a valid solution
for the input read so far, F ∗ must be a valid clustering of all but at most z of the free points. But we
showed that each of the at most k − ` clusters in F ∗ covers at most z free points, so there can be at
most (k − `)z + z free points in total. Finally, the offline algorithm is a 4-approximation, so if we assume
that η ≥ 4α, the existence of F ∗ with radius less than αr guarantees that the offline algorithm will find a
clustering of radius ηr. The result is that r is not raised, as desired.

Theorem 3.3. The algorithm produces a valid clustering of radius ηr using O(kz) memory and O(kzn+
(kz)2 logP ) time, where P is the ratio of the optimal radius to the shortest distance between any two distinct
input points.

Proof. Validity of the clustering: The first set of ` clusters covers all input points except the free points
by Lemma 3.2(d), and the second set of k − ` clusters covers all but at most z of the free points. Thus,
together, the k clusters cover all but at most z of the input points.

Memory usage: At any time, the algorithm remembers `(z+1) support points (including the centers),
at most (k− `)z+ z free points from before the current batch, and at most kz free points from the current
batch. This is a total of at most (2k + 1)(z + 1) points, and the working storage needed to carry out the
steps is constant per point.

Running time: At the beginning of a batch, we perform step 1 exhaustively in O(k2z) time. We
identify potential centers in step 2 by maintaining a count for each free point p of the free points within
distance βr of p. Each time we add or drop a free point, which happens at most O(kz) times per batch, we
perform a scan of the other free points to update their counts (this takes O(kz) time). When we convert a
free point c to a center, we identify its support points and the free points to be dropped in step 1 on the
same scan that drops c itself as a free point. The offline algorithm in step 3 runs in O((kz)2) time using its
own set of distance-ηr/2 counts; we charge a successful run of the offline algorithm, which ends a batch,
to that batch and a failed run to the resulting increase in r. In step 4, we have O(k) centers (k from the
previous batch and at most one per z + 1 of the O(kz) free points), so we test each of the O(k2) pairs of
centers for a conflict in O(z2) time; this takes O((kz)2) time, which we charge to the increase in r. Now,
there are O(n/kz) batches and O(logP ) increases in r, and each batch or increase is charged O((kz)2)
time, giving the desired bound.

The construction in Section 2 yields an m-instance parallelized algorithm with approximation factor
(η/α)m

√
α. We wish to choose the parameters to minimize this factor. We have the constraints:

η ≥ 2α+ β (1)
ηα ≥ η + 2α2 + 2β (2)
β ≥ 2α (3)
η ≥ 4α (4)

Setting α = 4, β = 8, and η = 16 satisfies the constraints and gives an approximation factor of 41+(1/m),
so we can achieve a (4 + ε)-approximation with m = O(ε−1). The memory usage and running time of the
parallelized algorithm increase by a factor of m to O(ε−1kz) and O(ε−1(kzn+ (kz)2 logP )). Note that two
things limit the approximation performance: that of the offline algorithm via (4), and the constraints (3)
and (1) that limit what an optimal cluster can do. Thus, an improvement in the approximation factor of the
offline algorithm will not carry through to the streaming algorithm unless it comes with a correspondingly
better way to analyze optimal clusters.
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3.1 Improvement using a center-finding oracle

There is a (3+ ε)-approximation version of the streaming algorithm, corresponding to the 3-approximation
offline algorithm, when the metric space comes with a center-finding oracle. Given a positive integer j, a
distance x, and a point set S, the oracle returns a point p having at least j points of S within distance x
or announces that no such p exists in the metric space. Such an oracle may be impractical to implement
in high-dimensional spaces, but when one is available, we can use it to improve the algorithm.

In step 2, instead of looking for potential centers among the free points, we invoke the oracle with
x = βr, j = z + 1, and S being the current set of free points, and we add the resulting point (if any)
as a center. Now, when the oracle fails, we know there is no cluster of radius βr centered anywhere
that covers more than z free points, so we can relax constraint (3) to β ≥ α. In step 3, we substitute
the 3-approximation offline algorithm, choosing centers using the oracle, and hence relax constraint (4) to
η ≥ 3α. With the modified constraints, we choose α = β = 5 and η = 15 to achieve a (3+ε)-approximation
with the same O(ε−1kz) memory usage; the running time depends on that of the oracle.

4 Clustering with anonymity

For the problem of k-center clustering with a lower bound b on the number of points per cluster, we present a
construction based on the parallelized Scaling Algorithm of Section 2 that achieves a (6+ε)-approximation.
Applications of this problem for anonymity are considered by Aggarwal et al. [2].

Algorithm 4.1 (Clustering with anonymity). Let δ = ε/2. First run the m-instance parallelized Scaling
Algorithm with m chosen to achieve a (2 + δ)-approximation, but modify it to keep a count of how many
input points “belong” to each center under an assignment of each point to a center within distance (2+δ)r
of it. (The algorithm does not store this assignment explicitly, but we use it in the proof of correctness.)
When an existing center catches a new input point, the center’s count is incremented, and when centers
are merged, their counts are added. The Scaling Algorithm returns a lower bound r on the radius of the
optimal k-center clustering of the input, a list of k preliminary centers c1, . . . , ck, and the number ni of
input points belonging to each preliminary center ci.

If ni ≥ b for all i, the preliminary centers ci constitute a solution within factor 2 + δ of the optimal
and we are done. Otherwise, we merge some centers using a scheme resembling the offline algorithm for
k-center clustering with anonymity [2]. Given a merging radius R, the scheme works as follows. Initialize
all preliminary centers to inactive; then, while there exists a preliminary center c that has no active center
within distance 2R, activate c. Next, attempt to allocate each input point p (belonging to a preliminary
center c) to an active center within distance 2R+ (2 + δ)r of c in such a way that each active center gets at
least b input points. To do this, construct a bipartite graph on the sets P of preliminary centers and A of
currently active centers with an edge of infinite capacity connecting a node x ∈ P to a node y ∈ A if their
distance is at most 2R + (2 + δ)r. Add a source s with an edge of capacity ni to each ci ∈ P and a sink
t with an edge of capacity b from each ci ∈ A, and compute a max flow from s to t. If this flow saturates
all edges entering t, it represents a valid allocation of the input points, which the merging scheme returns.

We attempt the merging scheme for various values of R in a binary search (which need only consider
values of the form d/2 and (d− (2 + δ)r)/2 for intercenter distances d) and keep the successful allocation
with the smallest value of R. The algorithm returns a clustering consisting of the active centers under this
allocation with radius (4 + 2δ)r + 2R.

Theorem 4.2. The algorithm produces a clustering with at least b points per cluster whose radius is at
most 6 + ε = 6 + 2δ times that of the optimal such clustering.

Proof. Every input point p belongs to a preliminary center c within distance (2 + δ)r of it and is allocated
to an active center c′ within distance 2R + (2 + δ)r of c, so p is within distance (4 + 2δ)r + 2R of c′. The
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Figure 2: Example of clustering with anonymity, with b = 3.

algorithm’s clustering consists of the active centers, so the clustering covers every input point at radius
(4 + 2δ)r + 2R by virtue of the active center to which the point is allocated. Furthermore, each active
center is allocated b points within distance (4 + 2δ)r + 2R of it. Therefore, the algorithm’s clustering is
valid. We must show that it is a (6 + 2δ)-approximation.

Let r∗ be the radius of the optimal clustering, and consider an execution of the merging scheme with
R ≥ r∗. Active centers are separated by more than 2R ≥ 2r∗ by construction, so each lies in a different
optimal cluster. We now claim that there exists an allocation of the form sought by the merging scheme,
namely the allocation A that gives each input point to the unique active center (if any) lying in its optimal
cluster. Let p be an input point; since optimal clusters have diameter 2r∗, A gives p to an active center c
within distance 2r∗ of it. At the end of the Scaling Algorithm, p belonged to a center c′ within distance
(2 + δ)r, so the distance between c and c′ is at most 2r∗ + (2 + δ)r ≤ 2R + (2 + δ)r. Thus, the merging
scheme could legally allocate p (as counted by c′) to c. This is true of every input point p, so the claim is
established. Consequently, the merging scheme must succeed whenever R ≥ r∗.

Thus, when the algorithm takes the smallest R for which the merging scheme succeeds, it will take an
R ≤ r∗. (The algorithm might consider not r∗ itself but a slightly smaller value of R for which the merging
scheme makes all the same decisions and therefore still must succeed.) The Scaling Algorithm ensures that
r is a lower bound on r∗, i.e., r ≤ r∗. Combining these two inequalities, the radius (4 + 2δ)r + 2R of the
algorithm’s clustering is at most 6 + 2δ times the optimal radius r∗, as desired.

Theorem 4.3. The algorithm runs in O(m(kn + k2 logP ) + k3 log k) time using O(mk + k2) memory,
where m = O(ε−1 ln(ε−1)) and P is the ratio of the optimal radius to the shortest distance between any two
distinct input points.

Proof. We use the simple O(k)-memory implementation of the Scaling Algorithm that stores only the
centers; it performs each of the O(logP ) scalings in O(k2) time and otherwise processes each point in
O(k) time for a total running time of O(kn + k2 logP ). Parallelization multiplies these bounds by m.
The running time of the second phase is dominated by the max flow computation, which is done O(log k)
times because there are O(k2) possible values for R. Using the relabel-to-front algorithm, each max flow
invocation takes O(k3) time and O(k2) memory. The desired bounds follow.

The example in Figure 2 should help clarify the argument and motivate the final radius of (4+2δ)r+2R.
We have two preliminary clusters c1 and c2 of radius (2+δ)r with n1 = 5 and n2 = 1. The Scaling Algorithm
decided to make the points A belong to c1 even though they are actually much closer to c2, perhaps because
c2 was not created until after they were read. Suppose we activate c2 in the merging scheme. All we know
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about it is that it is in some optimal cluster of diameter 2r∗ that contains b input points. For example,
suppose b = 3 and there is an optimal cluster centered at c∗ (not an input point) that contains c2 and
the points A. In order to guarantee that we can successfully allocate three points to c2 whenever R ≥ r∗,
we must make all input points within distance 2R of c2 (here the points A) available for allocation to it.
But these points could belong to a different center (here c1) that is another (2 + δ)r away, so to be sure of
catching them, we must allow c2 to take points belonging to centers up to 2R + (2 + δ)r away. However,
the algorithm knows only that the five points belonging to c1 are within (2 + δ)r of it; it knows nothing
else about where they lie. In allowing c2 to take points from c1 to ensure that it has access to the points
A, we are also opening the possibility of it taking the points B, which are (4 + 2δ)r + 2R away; there is
no obvious way to avoid this. Thus, we set the radius of the final clustering to (4 + 2δ)r + 2R to make
sure the clustering is valid. (For example, if b = 6, the algorithm might return a clustering consisting of a
single cluster centered at c2 containing all six points, which would need radius (4 + 2δ)r + 2R.)

The best-known offline algorithm [2], which essentially performs the allocation phase without the
perturbation caused by the initial Scaling Algorithm phase, achieves an approximation factor of 2. Whether
there is a streaming algorithm with a factor closer to 2 is an open problem.

4.1 Computing per-cluster statistics

Suppose that we wish to compute some statistics about the points allocated to each cluster as well as the
center itself. In most cases, the algorithm can be extended to compute the statistics without a second pass
over the input. For example, consider a medical application in which each input point represents a person
who may or may not have a certain disease, and suppose we want to know what percentage of the people
in each cluster have the disease. The first phase already maintains a count of people belonging to each
center, and we can maintain a second count of people with the disease in the same way. When we allocate
the people belonging to a preliminary center in the second phase, we simply allocate the people with the
disease in the same proportion. For example, suppose 100 people belong to a preliminary center c1 and 11
of them have the disease; if we allocate 30 of these 100 people to an active center c2, we assume that 3.3
of them have the disease. In effect, we are allocating to c2 30% of each individual who belongs to c1. The
fractionality of the allocation may appear silly but does not really harm the statistics.

In the same way, if we want the average height of the people in each cluster, we can maintain a “total
height” value for each center, allocate height values in proportion to people, and then divide the total height
allocated to a cluster by the number of people allocated to it. We can even compute several statistics on
the same run. In full generality, if each input point comes with a vector of real-number weights, we can
compute a total-weight vector for each cluster and divide by the number of points if we desire averages.

5 Conclusions

It is probably possible to combine our techniques for clustering with outliers and with anonymity to obtain
an algorithm for the problem with both outliers and anonymity (albeit with a worse approximation factor),
but we have not investigated this. One obvious open problem is to find an algorithm for the outlier problem
with better running time and memory usage than our approach or the sampling approach of [6], particularly
for the case where neither z nor n/z is small, or to prove a lower bound on the amount of memory needed.

If we are allowed multiple passes over the input, we can use a scaling-style algorithm to determine the
optimal radius up to a constant factor on the first pass and then bound it more tightly on each subsequent
pass by testing multiple guesses in parallel. By spreading the work across passes, we achieve the same
approximation factor with a much smaller number of parallel instances. (The basic Hochbaum-Shmoys
method [14] works naturally for guess-checking in the streaming model, but the offline algorithm for outliers
[7] does not; one could instead use a cut-down guess-checking version of our outlier algorithm.) Developing
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a better algorithm that fully exploits multiple passes to achieve the same approximation factor using even
less memory is another open problem.

Acknowledgment: The authors are grateful to Sudipto Guha for useful discussions.
Supplementary materials, currently including slides and a partial implementation of the algorithm for

clustering with outliers in Haskell, are available at http://mattmccutchen.net/clustering/.
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