
Secret Bit Transmission Using a Deck of Cards

Lynn Reggia

December 19, 2007

1 Introduction

Alice, perhaps a spy or dishonest bridge player, wishes to transmit a single
bit s′ secretly to Bob. To ensure secrecy Alice does so by using a one-time
pad, in this case, one bit long. A shared secret bit s must first be established
with both Alice and Bob. Using s, Alice calculates q = s⊕ s′ and sends the
value to Bob, who then retrieves s′ = q ⊕ s. Of course, Alice and Bob must
first establish the bit s.

We will begin by presenting a protocol for the transmission of one bit.
We will then extend this protocol to establish a multiple bit secret.

1.1 Assumptions

As always, assume that there is a malevolent third party Eve. Eve is trying to
discover s. We assume Eve has knowledge of whatever protocol Alice and Bob
are using, she has infinite computing power, and that she can hear everything
said between Alice and Bob. Therefore it is essential that whatever protocol
Alice and Bob use allows them to establish the bit s while providing no
information to Eve. It is not good enough that it is only unlikely Eve discover
s, after all she has infinite computing power, but it must be impossible that
she can do better than simply guess.

1.2 A Deal of Cards

The shared secret bit s will be established through the use of a deck of n
unique, ordered cards. Each of Alice, Bob, and Eve will be dealt a hand.

1



A random deal of cards is an ordered pair (a, b, e) where, out of
the deck, Alice is dealt a cards, Bob is dealt b cards, and Eve is
dealt e = n − (a + b) cards. Each player only knows the cards
held in their own hands. However, a, b, e, and n are all public
information.

Under set parameters a random deal of cards can be used to establish a
shared secret bit s between Alice and Bob.

2 A Randomized Algorithm

A random deal of cards (a, b, e) can be used to establish a secret bit s between
Alice and Bob.

2.1 Definitions

A pair p = (x, y) consists of two cards from the random deal, x
and y. One of them is held by Alice and the other by Bob.

Assume Alice holds the card x in her hand and Bob holds the card y. If
Alice and Bob both know the pair p = (x, y) exists, they therefore know who
holds which card by a simple process of elimination. Eve, however, even if
she knows the pair p exists, cannot tell which card Alice holds and which one
Bob holds. The best she can do is guess at who holds what.

2.2 Use p to Establish s

Assume that Alice and Bob can establish a pair p = (x, y). In doing so they
know who holds x and who holds y. Recall that x and y come from a deck of
unique, ordered cards, so we can establish an operator to determine if x < y
or if x > y. We will have Alice and Bob agree beforehand that if Alice holds
the lesser of the two cards, s = 1 and if Alice holds the larger card s = 0.

Once the pair p is established Alice and Bob can therefore determine
s. Eve, however, has no knowledge of who holds what card, so she cannot
determine s. The value s will be Alice and Bob’s one time pad. [1]

2



2.3 Establishing a Pair

Alice and Bob can establish a pair p. Begin with a random deal (a, b, e)
a ≥ 1, b ≥ 1, e ≥ 0 from the deck and proceed as follows:

1. For simplicity, and without loss of generalization, call whichever player
who holds the most cards Alice and the other player Bob. Therefore,
in all cases a ≥ b.

2. Alice selects a card x in her hand and a card y not in her hand to try
to create a pair p. She then announces the pair, either p = (x, y) or
p = (y, x), to everyone. She will randomly choose which of these two
pairs to announce. This ensures that Eve cannot determine who holds
what by the order in which x and y are announced in the pair.

3. If Bob holds y he says that p is a valid pair. Now Alice and Bob have
established a pair between them and establish s.

4. If Bob does not hold y say that p is not a valid pair. Alice announces
the locations of the cards x and y to all, namely that she holds x and
Eve holds y. These cards are then discarded from the deck, and the
protocol starts over with a new random deal (a− 1, b, e− 1).

The protocol ends when either a = 0 or b = 0.

3 Establishing Multiple Bits

To transmit multiple bits Alice and Bob use several repeated rounds of the
one bit procedure. Rather than stopping after successfully establishing a
valid pair, and subsequently getting a shared bit, Alice and Bob discard
both cards x, y ∈ p. Now the protocol repeats with a new random deal
(a− 1, b− 1, e).

This continues, with Alice and Bob either establishing shared bits or
outing one of Eve’s cards each round, until either a = 0 or b = 0. [1]

3.1 Code

To implement this protocol, a program using Java 5.0 was written. It consists
of two classes: SecCards, and a supporting class, Person.

3



The Person class is used to represent Alice, Bob, and Eve. Each Person
has two decks of cards, represented as Integer ArrayLists. One deck contains
the cards in a Person’s hand, the other contains all cards in the entire deck
of which the Person does not know the location (i.e., the cards not in the
Person’s hand and that have not been removed from the deck from previous
guesses). The Person class also contains a constructor to initialize the two
decks and a toString() method to print out a Person object in a clear manner.

The SecCards class is the core of the program. It consists of four methods:
main(), takeTurn(), getWorstCase() and playGame(). The main method
calls the playGame() method, sending it the number of cards Alice has (a),
the number of cards Bob has (b), and the total number of cards (a + b + e) ,
each time it wishes to run a game. This is done many times, and for many
different values of a, b, and e. The main method stores the number of shared
bits acquired by Alice and Bob after each game, and calculates and prints a,
b, e, the minimum, maximum, mode, and average number of bits acquired
for each set of runs, and the minimum number of bits guaranteed by a game
played with values a, b, and e. The guaranteed number of bits is calculated
by calling the getWorstCase() method. The playGame() method initializes
each of Alice’s, Bob’s, and Eve’s decks with a random deal of cards, and then
repeatedly calls the takeTurn() method, sending which player’s turn it is,
Alice’s or Bob’s, depending on who has more cards. The takeTurn() method
randomly chooses a card from the player’s deck whose turn it is, and a card
not in their deck, and then removes these cards from the appropriate decks,
according to the above multiple bit protocol. If a shared bit is acquired, a
counter is incremented.

3.2 Results

Through repeated testing of this protocol, I have found that frequently the
number of bits acquired by Alice and Bob is higher than the minimum number
of bits they are guaranteed. Given the situation with values a = n, b =
200 − n, and e = a + b − 1, Alice and Bob are never guaranteed to share a
bit. However, if the protocol is run 1000 times each for n = 10, 20..., 100, the
much higher average values in Table 1 are the result.

The average number of shared bits actually increases as a and b get closer
to each other in this case. This makes sense, as Alice and Bob can only share
as many bits as whichever one of them has the fewest cards.

Alice and Bob are guaranteed no bits also in the situation with values

4



Table 1:

Alice Bob Eve MAX MIN AV G MODE
10 190 199 10 6 9.07 9
20 180 199 20 10 16.449 17
30 170 199 28 14 22.315 22
40 160 199 35 17 26.78 27
50 150 199 39 21 30.544 30
60 140 199 43 22 33.121 33
70 130 199 47 23 34.856 33
80 120 199 47 25 36.075 35
90 110 199 50 25 36.678 36
100 100 199 49 27 36.946 38

a = n, b = n, and e = 2n − 1. Table 2 shows the results for running this
protocol 1000 times each for n = 10, 20..., 100

In both of these situations, the average number of acquired bits is much
greater than the guaranteed minimum number of bits. Further research is
being done on concluding exactly why this is the case.

4 A Deterministic Algorithm

A deterministic (Non-random) protocol also exists for Alice and Bob to ex-
change a secret bit.

4.1 Single Bit Protocol

This protocol works similarly to the randomized algorithm. Begin with a
random deal of cards (a, b, e) that will be used to establish the shared secret
s.

1. Assign each of the n = a + b + e cards a unique index 0 through n− 1.

2. If e = 0 and both a ≥ 0 and b ≥ 0 then we are finished. Alice and Bob
have assigned each of the

(
n
a

)
possible (a, b, 0) deals a unique index.

Alice and Bob now can establish a shared secret bit based upon the
index.

5



Table 2:

Alice Bob Eve MAX MIN AV G MODE
10 10 19 8 1 3.82 4
20 20 39 13 3 7.545 7
30 30 59 19 6 11.21 11
40 40 79 23 7 14.898 15
50 50 99 27 9 18.484 18
60 60 119 31 13 22.34 23
70 70 139 36 18 25.768 26
80 80 159 39 19 29.631 29
90 90 179 43 23 33.252 32
100 100 199 48 25 36.944 36

3. If e 6= 0 Alice, Bob, and Eve consider the deck as consisting of bn/2c
blocks of two cards each. So card 2m is in block m rank 0 and card
2m + 1 is in block m rank 1. If n is odd discard card n− 1.

For example, in a deck of n = 6 cards the three blocks are
(1, 2), (3, 4), and (5, 6).

4. For each block m from 0 through bn/2c, Alice and Bob each announce
whether or not they hold one of the cards belonging to block m, that
is, they hold either card 2m or 2m + 1 but not both.
If both Alice and Bob hold one card belonging to block m they have
established a pair and can compute a shared secret bit. Otherwise
they know that Eve holds the other card of block m. They repeat this
procedure of announcing block for each singleton set in their hand.

5. If Alice and Bob cannot establish a pair they establish a new random
deal (a′, b′, e′). Each of Alice, Bob, and Eve discards all cards belonging
to a block m if they hold only one card of that block. If Alice, Bob, or
Eve hold both cards of a block m, they discard the rank 1 card of that
block.

6. If a′ = 0 or b′ = 0 the protocol fails. Otherwise apply it recursively on
the new random deal (a′, b′, e′). [1]

6



4.2 Exchanging Multiple Bits

As with the randomized protocol, enabling the exchange of multiple bits
using the deterministic protocol requires some small changes.

1. Assign each of the n = a + b + e cards a unique index 0 through n− 1.

2. As in the single bit protocol, consider the deck as consisting of two card
blocks. If n is odd discard card n− 1.

3. For each block m from 0 through bn/2c, Alice and Bob each announce
whether or not they hold only one of the cards belonging to the block
m.

4. If both Alice and Bob hold one card belonging to block m they have
established a pair and can compute one shared secret bit as in the
randomized algorithm. They discard both cards; otherwise they know
that Eve holds the other card of block m and instead either Alice or
Bob (Whomever holds the card) and Eve discard a card. They continue
trying to establish further bits using the remaining blocks of the deal.

5. If a′ = 0 or b′ = 0 the protocol ends. Alice and Bob now establish a
new random deal (a′, b′, e′). Each of Alice, Bob, and Eve discards all
cards belonging to a block m if they have only one card of that block.
If Alice, Bob, or Eve hold both cards of a block they discard the rank 1
card. Apply the protocol recursively on the new random deal (a′, b′, e′)

The primary change in the multiple bit version is that the e = 0 case no
longer exists.

4.3 Code

Again, to implement this protocol, a program using Java 5.0 was written. It
consists of two classes: DetSecCards, and a supporting class, Person.

The Person class is used to represent Alice, Bob, and Eve. Each Person
has a deck of cards, represented as an Integer ArrayList. The Person class
also contains a constructor to initialize the two decks and a toString() method
to print out a Person object in a clear manner.

The DetSecCards class is the core of the program. It consists of four
methods: main(), getSubset(), doRound(), playGame(). The main method

7



calls the playGame() method, sending it the number of cards Alice has (a),
the number of cards Bob has (b), and the total number of cards (a + b + e) ,
each time it wishes to run a game. This is done many times, and for many
different values of a, b, and e. The main method stores the number of shared
bits acquired by Alice and Bob after each game, and calculates and prints a, b,
e, and the minimum, maximum, mode, and average number of bits acquired
for each set of runs. We’re still working on calculating the minimum number
of bits guaranteed by a game played using the deterministic protocol, and
a method to calculate this will be added once this is accomplished. The
playGame() method initializes each of Alice’s, Bob’s, and Eve’s decks with a
random deal of cards, and then repeatedly calls the doRound(), dealing with
removing and replacing the n− 1 card if n is odd. The playGame() method
also calls the getSubset() method after each round. The doRound() method
implements one round of the deterministic protocol, dividing the deck into
ranks and suits. For each shared bit acquired, a counter is incremented. The
getSubset() method returns a new deck after removing all cards of rank 1.

4.4 Results

Through repeated testing of this protocol, I have found that frequently the
number of bits acquired by Alice and Bob is higher than the minimum num-
ber of bits they are guaranteed. In this protocol, also, the average is even
higher than the minimum than in the non-deterministic protocol. Given the
situation with values a = n, b = 200−n, and e = a+b−1, Alice and Bob are
never guaranteed to share a bit. However, if the protocol is run 1000 times
each for n = 10, 20..., 100, the much higher average values in Table 3 are the
result.

Again, the average number of shared bits actually increases as a and b
get closer to each other in this case. This makes sense, as Alice and Bob can
only share as many bits as whichever one of them has the fewest cards.

Alice and Bob are guaranteed no bits also in the situation with values
a = n, b = n, and e = 2n − 1. Table 4 shows the results for running this
protocol 1000 times each for n = 10, 20..., 100.

In both of these situations, the average number of acquired bits is much
greater than the guaranteed minimum number of bits. Further research is
being done on concluding exactly why this is the case.

8



Table 3:

Alice Bob Eve MAX MIN AV G MODE
10 190 199 10 0 4.744 4
20 180 199 16 2 9.335 9
30 170 199 22 5 13.127 13
40 160 199 30 8 16.828 16
50 150 199 31 9 20.083 20
60 140 199 32 10 22.272 22
70 130 199 35 14 24.619 24
80 120 199 35 15 25.82 26
90 110 199 40 15 26.987 28
100 100 199 39 15 26.898 25

Table 4:

Alice Bob Eve MAX MIN AV G MODE
10 10 19 7 0 2.716 3
20 20 39 11 1 5.453 6
30 30 59 15 2 8.109 8
40 40 79 18 3 10.915 11
50 50 99 22 6 13.55 12
60 60 119 26 8 16.199 16
70 70 139 28 10 18.964 19
80 80 159 34 13 21.66 23
90 90 179 37 14 24.464 24
100 100 199 41 17 27.283 26

9



References

[1] M. S. P. Michael J. Fischer and C. Rackoff. Secret bit transmission using
a random deal of cards. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science.

10


