PAGE
1

ABSTRACT

Today, multiplayer content is an essential part of any game. With the proliferation of the Internet and local area networks it has indeed become a requirement. This paper examines and contrasts two popular methods of multiplayer game synchronization: peer-to-peer approach and the client-server approach.

Introduction

This honors paper deals with the subject of multiplayer game-world synchronization. In our scenario, there are two or more players involved in a game over a network. This network may either be a LAN or the Internet. The players within the game should experience essentially the same reality, thus if player A shoots at player B, player B should see a shot incoming from player A’s position. Thus, the game-worlds should be synchronized in a sense that all players see each other’s actions in exactly the same way. Hence, the coherence of our game reality is preserved. There exist two popular models of game world synchronization. In a peer-to-peer model, all the computers involved talk directly to all other computers. In a server model, every computer talks only to the server. There are pluses and minuses to each of these approaches, most notably in the areas of security and scalability. In this essay we will examine and compare these two methods.

First, let us discuss some history behind multiplayer programming. There are two popular approaches to writing multiplayer code: Windows Sockets and DirectPlay. Sockets came about as the first available mechanism for Windows networking. The aim was to abstract away the low-end hardware initialization and protocols, so all that the programmer had to do was call a generic routine to initialize networking and then could start sending and receiving data. However, WinSock was not explicitly designed for writing multiplayer game code, it was just a solid base on which such protocols could be developed. Enter DirectPlay. As a part of DirectX software development kit, released by Microsoft, it is explicitly designed to facilitate multiplayer game development. As such, it incorporates a number of features that would be difficult to implement otherwise. For example, one of the features is the support for automatic host migration in peer-to-peer sessions. In the peer-to-peer model, every computer communicates with every other computer in the game. One machine per game session is designated ‘host’. The host is responsible for keeping track of which players are in the game and informing the rest of the players when someone enters or leaves the game. If the host itself quits or is disconnected because of the network stall, another computer that is still in the game needs to be designated ‘host’. The host migration feature of DirectPlay takes care of that transparently, auto selecting the next host and transferring all of host’s responsibilities to that computer. This is just one example of the features that are built into DirectPlay. Because of the superiority of DirectPlay over WinSock, at least as far as game programming goes, the rest of the essay will use it as the main vehicle in our discussion of multiplayer game development.

Some Mathematics

Now, I would like to take a moment to discuss the mathematics of multiplayer games. Since our games will take place on the LAN at best and Internet with a modem connection at worst, we cannot ignore the subject of bandwidth. In most games the target frame rate is at least thirty frames per second. Studies tell us that if this limit is reached, our brain is tricked into believing that we see true motion, though we are in truth shown sequences of still pictures. Let us see how often we can send player information. What we are going to send are changes in game states. Orientation, position, and velocity are some of such possible states. Let’s say that in our multiplayer game we control a car, which we can drive around the screen. Then, the information that we would need to send would be the car’s orientation, position, and speed. Optimally, we would want to synchronize every frame, so that other players receive new updated information about us before a frame is drawn, requiring 30 sends per second. Orientation can be expressed in a ‘char’, which gives us a range of -128 to 127 and takes up 1 byte. Position, in our game-world coordinates, would be expressed in a ‘long’, giving us a range of –2,147,483,648 to 2,147,483,647 and taking up 4 bytes. Velocity would be expressed as a float and give us a range of 3.4E +/- 38 (7 digits), taking up 4 more bytes.

Orientation

1 byte

Position (x/y)
4+4 =
8 bytes

Velocity (x/y)
4+4 =
8 bytes

Total (data)

17 bytes

Network Overhead
24 Bytes

Thus, the total amount of information that we want to send would be 41 bytes multiplied by 30 times a second, which yields 1230 bytes per second. A regular 56.6k modem is capable of transferring 56,600 bits per second, which amounts to 7,075 bytes per second. In retrospect it would seem that sending 1230 bytes per second does not pose a problem, however that is not the case. Every player would need to send 1230 bytes per second, so if our connection method were peer-to-peer our game would support a maximum of 5 players. This is also a best-case scenario, as most modems never truly achieve 56.6k but rather connect at around 28.8k. If we switch to a LAN, the total number of players would increase, but anyone outside the LAN who wanted to log into our game with a modem would not have the necessary bandwidth. This is one of the major disadvantages of the peer-to-peer scheme, as the bandwidth requirement goes up very quickly as a number of players increases. With the server approach, this is less of a concern, as each player communicates only with the server and the amount of communication between the server and any one client is kept essentially independent of the number of players.

Peer-to-Peer

Now, let us discuss the peer-to-peer model. In this model, all clients talk to all other clients. Thus, individual state updates are transmitted to all the machines. Also, a single machine is designated ‘host’. The host is almost like a server, in that it keeps track of the players and informs the other clients when a client joins or leaves the game. Here, however, the similarity ends, as the host does not serve as a central connection point for all the clients. The host is a required entity, so peer-to-peer games almost always support host migration, which is a protocol that is commonly handled by DirectPlay. ‘Host migration’ automatically transfers the host responsibilities to another computer, in the case that the active host disconnects or becomes unavailable. Bellow is an illustration of a typical peer-to-peer setup.

[image: image1.png]

The advantage of the peer-to-peer method is that it is fault tolerant, easy to implement and does not require any special hardware. Since there is no central server to disrupt, if anything happens to one or more of the players, the rest will not be affected. Thus, this system is very fault tolerant. Implementation is also very simple as all clients are the same and there is no need for a specialized stand-alone server. Also, since the server is not present, there is no need for any special hardware.

The disadvantages of the peer-to-peer method are the high security risk and scalability problems. The issue of the security risk comes in because the clients are responsible for sending information about themselves to all other clients. Thus, there is no external validation mechanism and if a client were hacked, it could send erroneous information to the rest of the clients, which they would take it at face value. Hence, in a game, the cheater could walk though walls, get infinite health, etc. Yet the biggest disadvantage of peer-to-peer networking lies in scalability problems. As we demonstrated above, on a 56.6k network, there exist a physical limit of five players. This restriction is the primary reason for the downfall of the peer-to-peer approach to multiplayer gaming.

Client-Server
Now let us discuss the client-server model. In this approach, there is a dedicated computer that takes on the role of a server. All clients connect to the server. All of the communication takes place between client and a server, as clients never talk to each other. The server takes on the duties of the ‘host’, informing the clients of the joining and leaving players. The server also authenticates players’ moves before sending them to the other clients. Thus the scheme functions as follows, ‘A player wants to move forward. He sends the ‘forward’ command to the server. If the server allows the move, it broadcasts that move to all other players. If the command is invalid, the server messages the client and disallows the move.’ Bellow is an illustration of a client-server setup.

[image: image2.png]

The advantages of the client-server approach are the improved security and excellent scalability. The improved security is achieved because the server validates all of the clients’ moves. The scalability is good because each client only sees the up and down traffic from the server, which is essentially not dependent on the total number of clients. Further scalability may be achieved through load balancing, a principle that requires that you have a number of servers each handling a portion of the total number of connected clients.

The disadvantages of the client-server model are the need for dedicated hardware and reduced fault tolerance. The requirement for dedicated hardware is the primary disadvantage of the client-server approach. The server requires a very high bandwidth line, since it facilitates communication with all of the clients. Also the fault tolerance is reduced, since if the main server becomes unavailable, the game will stall. In retrospect, the advantages of the client-server approach far outweigh the disadvantages.

Final Thoughts

In conclusion, the two approaches are both valid but on different scales. If the game world will consist of only a few players, then a peer-to-peer model is an acceptable method for synchronizing the game-world. For example, Microsoft’s Age of Empires uses the peer-to-peer networking scheme, but limits the number of active players to four. However, if there is a possibility of a moderate to large amount of players being present in the game-world at the same time then the client-server model should be used. It should also be noted that the peer-to-peer model is much less secure, so if the security is a factor then the model should be chosen accordingly. An excellent example of the client-server approach is the ID Software’s Quake III, which is a fast-paced 3D shooter that allows up to forty clients to participate in a single game. In my view, the client-server model is vastly superior to the peer-to-peer model. Thus, my game uses the client-server approach for two main reasons: security is a large issue and servers are reasonably cheap.

Section II

Project Description

The game, which I am currently involved on, is a multiplayer racing game. The project began as an extension of a previous game that a colleague, Adam Silcot, and myself wrote in the summer of 1999. That project was entitled simply ‘Car’, for the lack of a better title, and was abandoned in early 2000. ‘Car’ was a shooter, where a player would drive a car around an arena and compete with other players. At the time, the main graphics engine was based on rectangular tiles. The multiplayer aspect was written using DirectPlay 3.0, using peer-to-peer networking. Because of lack of communication between the two programmers, as the development continued, the game became increasingly slow and buggy. The game only supported two players, since anytime a third would join, the game would crash. After attempting to debug the project for nearly a month, we gave up on it.

In the summer of 2001, I decided to revive the project. I decided to collaborate with a few artists, but the engine would have to be written by me. After a lot of research into the type of a graphics engine, I was down to two options – an isometric engine or a 3D engine. A 3D engine would be very elegant, since all of my modeling and texturing could be done in a 3D art program such as TrueSpace or 3D Studio Max. But I wanted the game to be very fast-paced and I was not sure of my Direct 3D coding abilities. Thus, I settled on the isometric engine. Although it uses flat tiles, the human eye is tricked into seeing the game world from an approximately 60-degree angle. This gives the player an effective illusion of depth.

[image: image3.png]. @

The current implementation of the engine uses 3 texture levels. They are: road level, shadow level, and object level. By loading textures on top of each other and using alpha transparency, we can achieve very pleasing visual effects. In addition to the three levels of texturing, the engine has animation capabilities. Thus, we can have animated textures, for example large explosions that take place over multiple animation frames as well as animated objects.

The collision system that accompanies this engine was designed for speed as well as accuracy. Thus it has two levels: parametric collision detection and lookup collision detection. In the parametric approach, a tile or the contents of a tile are mathematically defined, so that when an incoming vector is parameterized, it is relatively easy and fast to see if any previously mathematically defined boundary has been crossed. If it has, the engine can also compute an appropriate rebound vector. In the lookup method, an array is created that contains the tile information. Since the individual tiles are relatively small (64x32 pixels), the array is also fairly small, but allows for very accurate collision detection. All we do is algorithmically set all array entries that are inside the collidable area to 1 and the ones that are outside to 0. Thus, a single lookup operation, done in constant time, allows us to find out if a point is inside or outside of the area of interest. The game engine also maintains 3 levels of collision data. The first one is for the car, another for the bullets, and the third one is currently reserved.

The basic idea behind the game has changed. Now, the game involves multiplayer combat and includes an interesting wagering system. Since it would be difficult to wager money on the outcome of a particular game, I came up with a more risqué idea. What is the most important thing to any computer user? Their files. Thus, the current idea is that you can bet a part of your hard-drive integrity on the outcome of a particular match. The loser of a match will get a few bytes corrupted in a random spot on their hard drive, possibly damaging some important data. Consequently, the game has a very real element of risk. Will this scheme draw players to the game or away from it? Time will tell.

The editor that is included with the game is capable of creating any level that a designer can think of. It uses a very native interface and allows the user to quickly construct a functional level using multi-texturing and every other feature that the engine supports. Development of the editor took almost as long as the development of the engine, since each took approximately five months, including the research. However, the editor has been an excellent tool for the artists that participate in the project. Since using the editor requires knowing nothing of programming or of the game engine itself, the artists were very happy to work with a singular interface that allowed them to easily design the levels for the project.

This wraps up the current project description. The work on the game is still continuing and will not cease until this project is fully operational. Note: as the day of this publication (April 20th, 2002), the project is over 25,000 lines of code and has taken approximately 700 hours of work.

