
 1

Speeding up Queries in a Leaf Image Database

Daozheng Chen

May 10, 2007

Abstract

We have an Electronic Field Guide which contains an image database with
thousands of leaf images. We have a system which can take a photo of a leaf and use this
image to query the database and bring out a set of leaf images which have the most
similar shape as the query leaves from different species. The existing query algorithm is
based on a brute force approach, and it does not have a very attractive query processing
time. After we have tried some approaches to speed up the system, we discovered that
two methods using a distance matrix show some usable improvement.

Key Terms: Nearest Neighbor Query, Metric Space, Data Structures, Image Database

1. Introduction

In the project, “An Electronic Field Guide: Plant Exploration and Discovery in the
21st Century”, a prototype electronic field guide for the flora of Plummers Island in the
District of Columbia is constructed. The field guide integrated a novel computer vision
algorithm, Inner Distance Shape Comparison (IDSC), for computing leaf similarity into
an image browser that “assists a user in navigating a large collection of images to identify
the species of a new specimen” [2]. One of these functions is to bring out a list of species
whose leaf shape is most similar to the query leaf’s shape. Given a positive number n, the
system can compute the similarity value from the query to every existing leaf, and then
choose the k nearest leaves which are from n different species. However, because the
computation of similarity between two leaves is time consuming, the query processing
time is not very attractive if the number of leaves in the database is very large.

To reduce the searching time, we notice that the similarity value of two leaves
approximately satisfies the property of a metric in a metric space, so we look at similarity
search methods in a metric space. Currently, there are “two alternatives when the only
information that we have is the distance function.” The first one is the embedded method,
in which it “derived ‘features’ purely based on the distance function.” This method can
replace the original expensive distance computation function to be a much less expensive
distance computation function, and it can also index the elements in the database “using
multidimensional indexes thereby speeding up the search” [3]. However, we have not yet
considered this method.

The other method uses “the given distance function to index the data with respect
to their distance from a few selected objects,” which is called a distance-based indexing
method [3]. This method can reduce the number of distance computations compared with
sequentially scanning the entire database, and it is the primary approach we have used so
far.

In this paper, I will first describe the problem, define a metric space, and propose
a general search algorithm in section 2. In section 3, I will describe the search methods in

 2

detail. In section 4, I will show some results of the experiment using the methods
described in section 4.

2. The Problem, Metric Space, and General Search Algorithm

In this section, to begin, I will give the description of the problem, then the
definition of a metric space, and then a general search algorithm which is used in three of
the five algorithms proposed in the following section.

The problem is that in a universal set UL of leaves from a set US of plant species
with distance function D defined for any two elements in UL, given a nonempty subset L
of UL from a set S of plant species, a query q from UL, and a positive integer k (0 < k <=
the size of S), what is the k nearest species in S with the smallest distance from q. The
distance for a species A in S from q is defined to be the shortest distance among all
distances between the query and leaves in S which belong to species A. Because the
distance function d for any two leaves approximately satisfies the properties of the metric
in a metric space, we decided to use methods for nearest neighbor search in metric space
to approach this problem.

A metric space is a 2-tuple (S, D) where S is a set of elements, and D is function
such that D: S × S → R (the set of real numbers), where for a, b, c ∈ S,

(1) D(a, b) ≥ 0
(2) D(a, b) = 0 if a = b
(3) D(a, b) = D(b, a)
(4) D(a, b) + D(b, c) ≥ D(a, c)

The function D can be called metric, distance function, or simply distance. In our project,
the current distance function between two leaves obey properties (1), (2), (3), and almost
always obey (4).

Before looking at those methods in the next section, I will introduce the general
idea of how to search the database based on the nearest neighbor algorithm discussed in
Hjaltason and Samet’s papers [1, 3]. Three of the five algorithms introduced below use
this general idea. It treats the whole database as an object, we first pick a pivot out from
this database and compute the distance d between the pivot and the query, the rest of the
elements in the object can be viewed as one or more nonempty sets, each of which can be
viewed as an object. Using the triangular inequality and the existing distance relation
between the pivot and the rest of the elements, we can obtain lower bound of distances
between the query and the rest of sets (objects). We then put these objects and the pivot
into a priority queue, and then retrieve an element from the queue whose distance or
lower bound to the query is the shortest. If it belongs to a single element in the database,
then we know that the distance between the query and the rest of the elements in the
database must be greater than or equal to the distance between the query and this element.
So we can remove it from the queue and report it to be a nearest neighbor. If it is a set,
then we conduct a similar procedure as we have done for the whole set. We continue this
procedure, until we finally get a list of nearest neighbors which contains k plant species.
To make this idea clear, I have provided the following pseudocode of the algorithm
below:

 3

Precondition of the algorithm:
1. k: number of top species needed to be returned. (0 < k <= the number of species in the

group passed)
2. q: the query leaf
3. group: an object which refers to the whole set of leaves in the dataset. Its initial

distance to query is 0.

Pseudocode
0 NearestSpeciesSearch(k, q, group)

1 queue ← an empty priority queue storing objects referring to a set of leaves or referring
a single leaf.
2 nearestLeafList ← an empty list storing the nearest leaves found so far
3 nearestSpeciesList ← an empty list storing the nearest species found so far
4 Enqueue(group) /* please see the precondition (3) above for meaning of group */

5 While (true)
6 E ← Dequeue(queue)
7 /* this operation returns an object whose distance or distance lower bound to
 query is the shortest in the queue */
8 If E is a single leaf
9 Put E at the end of the nearestLeafList
10 If the species type of E does not exist in nearestSpeciesList
11 Put the species type of E at the end of the nearestSpeciesList
12 End
13 If (size(nearestSpeciesList) = k)
14 End the algorithm and return the nearestSpeciesList
15 End
16 End
17 If E is referring to a set ES of leaves
18 pivot ← pick a leaf out from the set ES
19 dist ← compute distance between q and pivot
20 enqueue the pivot into the queue
21 partition ES/{pivot} into one or more sets of leaves. For each of these sets,
 compute its distance lower bound to the query, and put it into the queue
22 End
23 End

The behavior of this algorithm is determined by the following three factors:

1. It can use different schemes to choose a pivot from the set. This corresponds to
step 18 in the pseudocode.

2. It can use different schemes to view the rest of the elements in the set as one or
more nonempty sets. This corresponds to step 21 in the pseudocode.

3. It can use different schemes to compute distance or lower bound between the
query and the set. This corresponds to step 21 in the pseudocode.

 4

3. Search Methods
Below, I discuss five algorithms to do the nearest neighbor queries. The first one

is a tree structure which organizes the database according to the distance function before
performing a search. The next three are variants from the general scheme which use a
distance matrix when performing the search. The last one is a raw algorithm which treats
each species as an object and uses a distance matrix to do the search.

3.1. Using the Vantage Point Tree (vp-tree) – VP method

The vp-tree [4] is a data structure which organizes the dataset into a binary tree
structure according to the distance function. I refer to this method as VP. When building
the tree, it first selects a pivot (Yianilos terms this pivot to be vantage point) p from the
whole set S of elements in the metric space (S, d), and computes its distance to all
remaining elements in S. Then it partitions the set S/{p} into subsets S1 and S2 with
roughly equal size according to the median r of those distances, that is

S1 = {o belongs to S/{p} | d(o, q) <= r} and
S2 = {o belongs to S/{p} | d(o, q) > r}

So for a root node in a vp-tree, it represents the whole set of elements in the metric space.
Specifically, it contains the selected pivot p for partitioning the set, and the left and right
children representing S1 and S2. After building up the root node, it recursively applies this
partition scheme to S1 and S2 to produce the whole tree. The leaf nodes of the tree will
store “one or more elements, depending on the desired capacity” [3].

3.1.1. Lower and Upper Bounds

For each internal node in the tree, it will also store the boundary values of its two
children for the purpose of performing a search, that is,

for any o ∈ S1, we have d(q, o) ∈ [rlow,1, rhigh,1]
for any o ∈ S2, d(q, o) ∈ [rlow,2, rhigh,2]

The simplest way to store the boundary value is to let rlow,1 = 0, rhigh,1 = rlow,2 = r, and
rhigh,2 be ∞ (in this case, the closed bracket ‘]’ following rhigh,2 should be ‘)’). This allows
us to store just the median r in an internal node. But to improve the search performance,
we can store the tightest boundary values, “perhaps at the price of excessive storage cost”
[3].

3.1.2. Pivot Selection

The simplest way to select a pivot is to randomly choose an element in the metric
space which is currently being dealt with. But better schemes of choosing the pivot can
yield results in “nontrivial search-time savings.” One way is to choose a sample from the
current metric space, evaluate each element in the symbol, and then choose an element
within this sample as the vantage point based on the evaluation. The evaluation of an
element is done by choosing another sample in the current metric space, “from which the
median of IIp(S), and a corresponding moment are estimated” [4]. Finally, the vantage is
chosen as the one with the highest moment.

 5

3.1.3. Algorithm

To perform the nearest species search, we use the general search algorithm in
section 2. Initially, we put the root node representing the whole set of leaves into the
queue. When we pull out a node N from the queue, if it is a leaf node, we simply compute
the distance between the query and each leaf stored in this leaf node, and put all of these
leaves into the queue. If it is an internal node, we will choose its vantage point as the
pivot to compute its distance to query and put it into the queue. Then we partition N into
two nodes representing its two children. To compute their lower bound distance to query,
we use max{d(query, pivot) − rhi, rlo − d(query, pivot), 0}, where d(a, b) be the distance
between two leaves. This formula is correct because for an element a in N which is not
the pivot, we have |d(query, pivot) – d(pivot, a)| ≤ d(query, a).
Let F = d(query, pivot) – d(pivot, a), then if F < 0, then

d(query, a) ≥ d(pivot, a) –d(query, pivot) ≥ rlo − d(query, pivot).

If F ≥ 0, then

d(query, a) ≥ d(query, pivot) – d(pivot, a) ≥ d(query, pivot) − rhi.

Also, d(query, a) ≥ 0. So d(query, a) ≥ max{d(query, pivot) − rhi, rlo − d(query, pivot),
0}

3.2. Using INN1, INN2, and INN3 with Distance Matrix

In this method, before performing the search, we first compute the distances
between any two distinct elements in the database and store them in a matrix. This matrix
is called a distance matrix, and it serves to build the distance relation between the pivot
and other sets of elements in the database. To do the search, we address three methods
which are described in Hjaltason and Samet’s 2000 technical report [1], which I refer to
as INN1, INN2, and INN3.

3.2.1. INN1 and INN3

In INN1, initially an object referring to the whole set of leaves with distance to
query being 0 is put into the queue, and the lower bound of distances of all leaves to the
query is set to be zeros. When pulling out an element from the queue, if it is a single leaf,
we report it to the nearest neighbor list. If it is the object referring to the whole set of
leaves, we randomly pick a leaf as pivot, compute its distance to query, and put it into the
queue. Then we use this distance to update distance lower bounds to query for the rest of
the leaves in the set. To update the lower bound of a leaf L, we compute D = |d(query,
pivot) – d(pivot, L)|, where d(query, pivot) is the distance between query and pivot and
d(pivot, L) is the distance between pivot and L, which is stored in the distance matrix. If
D is greater than the existing lower bound distance between L and the query, then the
lower bound is set to be D. Otherwise, there is no update needed. Then we put an object
containing the set of leaves without the pivot into the queue. Its distance lower bound to
query is the smallest lower bounds of all leaves in this set. If the newly pulled out
element is an object referring to a proper subset S of the whole set of leaves, we pick the

 6

leaves with the lowest lower bound distance as pivot. We then use its distance to query to
update the lower bounds of the rest of leaves in the S as what we do for the object
referring to the whole set of leaves. We keep doing this until we have the expected
number of leaves species we want.

In INN3, we do a similar operation as we do for INN1. However, when the newly
pulled out element is an object referring to a set of leaves, and after we finish updating
the distance lower bounds for the leaves in the set, we partition the set into two or more
subsets and put them into the queue. For each of these subsets, its lower bound distance
to query is the smallest lower bound of leaves within that set. In the case that we partition
the set into two subsets, the search algorithm behaves similarly to when the vp-tree is
used. However, it has a different way to choose the lower bound of distance for the set
and the size of the partitioned two sets may not be the same. Now, according to these two
partition schemes, a natural idea is to partition it into N subsets, and each subset contains
only one leaf. This is exactly the idea INN2 uses.

3.2.2. INN2

This algorithm first randomly picks a pivot p from the database, computes its
distance to query (denote it d(q, p)), and then uses d(q, p) and the distances between p
and the rest of the leaves to obtain the lower bounds of distance from query for the rest of
the leaves. Then it puts all the leaves, including p, into a queue and the one with shortest
distance or lower bound is retrieved. If the retrieved element E has its actual distance
from query computed, we know that all the rest of the elements in the queue have
distances greater than E’s. Therefore, we remove it from the queue and report it to be a
nearest neighbor. If the retrieved element E only has its lower bound of distance, then we
use all the computed actual distances to query to refine a new lower bound of the
element. That is, let d(q, r) be the actual distance between query and the element r, let d(r,
E) be the distance between r and E. If | d(q, r) – d(r, E) | > the lower bound of E, then
make the lower bound of E be | d(q, r) – d(r, E) |. After finishing the refinement, if the
lower bound of E is still greater than or equal to any other actual distance and lower
bounds in the queue, then we remove E from the queue, compute the distance between E
and the query, and then put it back into the queue. We keep doing this until we have a list
of nearest neighbors which includes the expected number of species.

3.2.3. Incremental Nearest Species (INS) with Distance Matrix

In order to bring out a list of nearest species, we also consider treating all leaves
from the same species as an object. I refer to this method as Incremental Nearest Species
(INS). First, we need to define a proper distance function D which is possible to use
triangular inequality to refine the distance. As Professor David Jacobs points out, we can
use the distance function proposed at the beginning of section 2. That is, the distance for
a species A from a query q is defined to be the shortest distance among all distances
between the query and leaves in the database which belongs to species A. This idea
corresponds to the idea above to locate the nearest species based on nearest leaves. Now
we have a raw searching algorithm which uses this idea. Let the expected number of
species to be brought out be k. In the algorithm, it maintains the upper bound and lower
bound of distance from query for each species, and it sorts the list of species according to
their lower bounds. The algorithm keeps refining the lower bound and upper bound of

 7

each species until the (k+1)th smallest lower bound is greater than or equal to all upper
bounds of the previous k species which have smaller lower bounds than the (k+1)th one.
By doing this, we can ensure that no species outside these k species will have a distance
smaller than those for any of these k species (because if it is, then let the species outside
these k species be P, let the query be q, and let d(q, X) be the distance between q and a
species X. We know that lowerBound(d(q, P)) ≥ upperBound(d(q, L)) for any L within
that k species, but by our assumption, we will have lowerBound(d(q, P)) ≤ d(q, P) <
upperBound(d(q, W)) for some W within that k species -- A contradiction).

Now I will describe how the algorithm refines the bounds. The algorithm keeps
picking new pivots out of the database, computes its distance to query, and then uses this
distance to refine the bound. Perhaps the simplest way to pick a pivot is to randomly
select one whose distance to query has not yet been computed. But according the scheme
of refinement of bounds below, we can have another one. To refine the bound, consider
that if the pivot is refining the bounds of its own species, then by the definition of the
distance between query and species, we can let the upper bound be the d(query, pivot). If
all the leaves within a species have been picked out as pivots, then we can directly let the
upper bound and lower bound be the smallest distance for those pivots. However, in
general, if a pivot is refining the bounds for a species X, we are choosing the smallest of
d(query, pivot) + d(pivot, J), where J is a leaf within that species in the database, for
d(query, X) ≤ d(query, J) ≤ d(query, pivot) + d(pivot, J). For the lower bound, notice that
we may have d(query, X) ≤ abs(d(query, pivot) - d(pivot, J)), which is illustrated in the
following picture:

The green ball is the query, the two blue balls is from the species, the red ball is
the pivot, and d(G, B1) = 1, d(G, R) = 3, d(R, B2) = 0.3

G B1

B2

R

3

1

.3

To still obtain some lower bound, I choose the

max{0, (abs(d(query, pivot) - d(pivot, J)) – M)}

where M is the maximum distance from J to the rest of the leaves within the species. This
is true because d(query, X) = d(query, y) ≥ d(query, pivot) – d(pivot, y) ≥ abs(d(query,
pivot) - d(pivot, J)) – M, for some leaf y within the species, and the d(query, X) =
d(query, y) ≥ 0.

However, the scheme does not refine the lower bound quickly and the result in
my experiment shows that it does not provide much speed up. However, notice that if all
the leaves from a species have been picked up as pivots, we can obtain the exact distance
between query and the species because all its leaves’ distances to query are computed.

 8

Also, many species do not have many leaves in it, so we will be able to obtain the exact
distance quickly by only picking out the leaves from the same species as pivots.
Based on this insight, I make the first (0.05 * the size of the dataset) pivot to be randomly
chosen. Then it switches to choose pivot within only one species until all leaves within
this species have been chose and then switch to pick leaves from another species. Call
this approach C, and it produces better results in the experiment. Notice that these lower
and upper bound update schemes require us to know the distance between the pivot and
the leaves in the database, and a simple approach is to use a distance matrix.

4. Experiments

I performed some experiment for method VP, INN1, INN2, INN3, INS. In each of
these experiments, I have 1,115 leaves in the database and 46 different leaves outside the
database as input in queries. They are all 10 nearest species queries. Among these 1161
leaves, 64,008 triples out of 260,149,140 possible triples of leaves do not obey the
triangular inequality using the current distance function. That is, 0.0246% of possible
triples of leaves do not obey the inequality. The numbers of distance computation needed
using the above 5 methods and the brute force method are showed in the following chart:

Figure 6.1

653
318 318 477

883
1115

0

500

1000

1500

VP INN1 INN2 INN3 INS Brute
Force

average number of distance
computation

Since the distance function does not exactly obey triangular inequality, we also need to
consider the correctness of the above search method, except for the brute force search,
which is not using the triangular inequality to find nearest species.

Notice that for the VP algorithm, I choose the simplest method to pick pivots and

define bounds for a child of an internal node which is addressed in 3.1.2 and 3.1.1
respectively. For the INN3 method, I partition a newly pulled out subset into two subsets
with random sizes and put them back into the queue. For the INS method, it is using
approach C and the distance matrix discussed at the end of section 3.2.3. In this

 9

experiment, we can see that INN1 and INN2 have the best improvement compared with
brute force, and they also maintain the same correctness rate. INS does not gain much
improvement and also has a lower correctness rate compared with the brute force
approach.

In a further experiment for INN1, INN2, and INN3, I expand the number of
queries to be 1,161. In every query, I let one of those 1,161 leaves to be query, and the
remaining leaves are put into the database. The result is showed in figure 6.3 and 6.4.

Figure 6.3

318 318 477

1160

0

500

1000

1500

INN1 INN2 INN3 Brute
Force

average number of
distance computation

Figure 6.4

1094 1094 1094 1094

0

500

1000

1500

INN1 INN2 INN3 Brute Force

number of queries with
correct species within the
returned species (total
number of queries: 1161)

In this experiment, we can see that INN1 and INN2 still show the best improvement
compared with brute force and maintain the same correctness rate. In a later experiment, I
used 2,004 leaves from 32 different species in the database, 128 queries from 32 species,
and INN1 as the search method. We have the search result compared with brute force
approach in the following chart:

 10

Figure 6.5

3.14

9.14

0

5

10

INN1 Brute Force

average execution time to
get the top 10 species
(seconds)

The program for this experiment is written in Matlab, and it is running under Microsoft
Windows XP operating system with Intel Xeon(TM) CPU (1.50 GHz clock rate) and 1
GB RAM. From this experiment, we can see the INN1 method indeed produces some
usable speed-up for the current system. Due to the time constraint, I have not yet checked
the correctness of the INN1 method in this experiment and performed an experiment for
INN2.

However, using a distance matrix, the size of the matrix will grow to be very big.
Consider a database with 10,000 leaf images and a distance between any two leaves is
stored as a 4 bytes integer, then the matrix will need about 381 megabytes. However,
because of the symmetric property of the distance function, the value in the ith row and
the jth column of the matrix is equal to the value in the jth row and the ith column. So we
really just need to store half of the matrix, which reduces the memory needed for the
matrix by two. In the coming experiment, we will have 6,000 leaf images in the database,
which needs about 69 megabytes to store the distance matrix. However, although we can
reduce the storage size by half, the distance matrix is still impractical to store if the size
of the database is very large, such as 108 images.

6. Conclusions

Distance-based indexing methods in a metric space, such as VP, INN1, INN2, and
INN3, can be used to speed up the query processing time of the image database in the
current electronic field guide. Among them, INN1 and INN2 show the best improvement
on reducing the number of distance computations needed and maintain the same
correctness rate as the brute force approach does. INN1 has improved the searching time
of the current system by a factor of 3. However, these two methods require potentially
expensive storage of the distance matrix. The current INS method shows some speed-up,
but the improvement is small and does not maintain the same correctness rate.

Since the INN1 and INN2 methods need the distance matrix and the storage of the
matrix may be expensive when the size of the database is very large, we may want to
consider other methods which do not use a distance matrix. We might consider some
other distance-based indexing method such as using a multi-vantage point (mvp) tree and
M-tree [3]. We might also consider trying some embedded methods other than distance-
based indexing methods. Also, the current INS is just a raw algorithm, so we might also
consider improving it. Furthermore, Professor David Jacobs suggests using a fast but less
accurate algorithm, Fourier Descriptors, to help choose pivots when doing the search, and
it will be a main idea we consider to improve the search in the next step.

 11

7 Acknowledgements.

The author would like to thank Professor David Jacobs for his discussion and
direction on this project. The author would also like to thank graduate student Sameer
Shirdhonkar for teaching him how to write and debug programs in Matlab.

 12

Bibliography

[1] Hjaltason, G. R. and Samet, H. 2000. Incremental similarity search in multimedia

databases. Computer Science Department TR-4199, Univ. Maryland, College Park,
Md., Nov.

[2] G. Agarwal, H. Ling, D. Jacobs, S. Shirdhonkar, W. J. Kress, R. Russell, P.

Belhumeur, N. Dixit, S. Feiner, D. Mahajan, K. Sunkavalli, R. Ramamoorthi, and S.
White, First StepsToward an Electronic Field Guide for Plants," Taxon, in press.

[3] G. R. Hjaltason and H. Samet. Index-driven similarity search in metric spaces. ACM

Trans. Database Syst., 28(4):517–580, 2003.

[4] Yianilos, P. N. 1993. Data structures and algorithms for nearest neighbor search in

general metric spaces. In Proceedings of the 4th Annual ACM-SIAM Symposium on
Discrete Algorithms (Austin, Tex.). ACM, New York, 311–321.

