
December 12, 2006

Vertex Reordering for Cache Coherency:
Sorting along Morton-Order Curves

A research paper submitted for
Departmental Honors

in the department of
Computer Science

at the
University of Maryland, College Park

Submitted by
Jonathan Howard

Under the advisement of
Amitabh Varshney

Jonathan Howard Vertex Reordering for Cache Coherency

Page 2 of 10

Table of Contents

Introduction………………………………………………………………........... 3
Existing Techniques……………………………………………………….......... 3
Implementation
 Chan’s Approximate Nearest Neighbor Algorithm……………………… 4

Our Algorithm: Morton-Order Sorting…………………………………... 4
Real-time Applications…………………………………………………... 5

Application to Particle Systems
 Our Implementation……………………………………………….….….. 5
 Results: FPS Data………………………………………………………... 6
 Performance Restrictions: Inter-Frame Coherence……………….…….... 8
Future Work………………………………………………………………….…. 9
Acknowledgments……………………………………………………………..... 9
References…………………………………………………………………….... 10

Jonathan Howard Vertex Reordering for Cache Coherency

Page 3 of 10

1. Introduction

In virtually all areas of computer graphics, from Hollywood visual effects to scientific
visualization to next-generation video game consoles, there is a growing push toward realism
and the ability to process exponentially increasing amounts of data. At the same time, the
gap between processor speed and memory speed has been widening, so caches have become
increasingly important in reducing latency. While this presents a many-faceted problem, one
key to accomplishing this ambitious goal is efficient use of caching to increase performance.

Scientific visualization data is now measured in the hundreds of megabytes, and character
models for next-generation game consoles often contain hundreds of thousands of vertices.
In these applications, badly ordered vertices could result in significant performance hits due
to cache misses each frame. An intelligent vertex ordering minimizes these cache misses and
allows applications to take full advantage of the graphics hardware. In some cases, it even
opens the possibility for interactivity where, without vertex ordering, it may not have
previously been possible.

A completely optimal ordering is computationally intensive to compute, highly dependent on
the specific cache properties of each target machine, and therefore impractical. The ideal
compromise, therefore, would be an algorithm that finds a close approximation of the
optimal ordering, and does so very quickly.

The concept of vertex reordering is not without precedent; multiple techniques have been
established for vertex ordering in the past, and a discussion of existing techniques follows in
the next section. However, we believe there is still room for improvement. We present an
algorithm that orders vertices along a space-filling curve – specifically, using their Morton
order – and does so fast enough for real-time applications.

2. Existing Techniques

Precedent in this area includes “Triangle order optimization for graphics hardware
computation culling” (Nehab, Barczak, and Sander) and “Streaming Meshes” (Isenburg and
Lindstrom.) However, the algorithm we will use for comparison is the OpenCCL algorithm
published in 2005 by UNC, Chapel Hill in the paper “Cache-oblivious mesh layouts” (Yoon,
S., Lindstrom, P., Pascucci, V., and Manocha, D.).

OpenCCL is able to provide a well-optimized mesh ordering, and it does so in the general
case, without requiring specific knowledge of the target cache. They claim speedup factors
of between 2 and 20 times the original frame rate (though they make no promises for any
specific application.)

However, there is one major drawback to OpenCCL: execution time. It takes minutes or
even hours for OpenCCL to reorder the vertices of a model of any significant size.
According to their documentation, large models must be broken up into spatially coherent

Jonathan Howard Vertex Reordering for Cache Coherency

Page 4 of 10

chunks of 2000 to 4000 faces. Each individual piece is then run through the algorithm, and
some other method must then be used to re-integrate the chunks. This is frustrating for end
users at best. Moreover, even the processing time for individual chunks is impractical in a
real-time interactive application. Our algorithm presents an alternative with comparable
results and greatly reduced processing time.

3. Implementation

3.1 Chan’s Approximate Nearest Neighbor Algorithm

Our method sorts vertices along a Morton-order space-filling curve to achieve
comparable cache coherency to that of OpenCCL (as measured by frame rate
improvements) and requires much less processing time to do so. The algorithm builds
upon code adapted from the paper “A minimalist's implementation of an approximate
nearest neighbor algorithm in fixed dimensions,” (Chan, 2002.)

The key concept from Chan’s code is a new comparison-based sorting method. The
obvious method for comparisons along a Morton-order space-filling curve is to evaluate
exact distances along the curve for each vertex, and then sort based on the computed
values. Instead, Chan uses a clever series of bit-wise operations to determine the order in
which any two vertices appear on the curve, as opposed to the actual values for each
vertex. Comparisons that use this bit-wise method are much more efficient than
traditional methods of computing Morton order.

3.2 Our Algorithm: Morton-Order Sorting

Chan’s code was written for approximate nearest neighbor searches and closest pair
queries. However, this method of Morton-order comparison can be applied to vertex
reordering as well. Our algorithm builds upon Chan’s bit-wise operations to perform
comparison-based sorting on the vertices of a mesh to obtain a cache-coherent ordering.
In our observations, this method achieves comparable results to that of OpenCCL,
producing 90% of OpenCCL’s performance increase.

In addition, our algorithm does not exhibit the same 2000-4000 face performance
limitations of OpenCCL, so our algorithm runs in a fraction of the time. Because of this
time speedup, our algorithm presents interesting possibilities in the realm of real-time
graphics applications. For instance, OpenCCL might take several hours to reorder a set
of isosurface data, making its use impractical in most situations. Our algorithm takes
orders of magnitude less time to achieve similar results, so it could feasibly be used to
bring such large datasets into the realm of near-interactive rendering.

Jonathan Howard Vertex Reordering for Cache Coherency

Page 5 of 10

3.3 Real-time Applications

Since our algorithm uses only comparisons between vertices, it does not need to
permanently store information about any other vertices in the mesh. Therefore sorting
can be amortized over a number of frames without penalty. This presents another
interesting possibility: that of real-time vertex reordering at run-time. By amortizing the
sorting steps over a number of frames, vertex data can be sorted over time, and frame-rate
can be continually increased as the program progresses, without waiting for any pre-
processing time whatsoever.

In addition, large particle systems can dynamically sort its particles along a space-filling
curve, for cache-coherent lookups into its particle array, provided the system exhibits
properties described in the next section. OpenCCL is essentially a pre-processing
algorithm, to be completed in one coherent step. Therefore it is not practical for sorting
dynamic systems, and is unhelpful when the vertices (particles in this case) are in
continuous non-spatially-coherent motion. However, our algorithm, when amortized
over time, expands the vertex reordering concept to cover not only static meshes, but
dynamically changing data as well.

4. Application to Particle Systems

4.1 Our Implementation

Since our algorithm works generally on positions in three dimensional space, and the
sorting calculations can be amortized over a number of frames, we hypothesized that
particle systems might apply our techniques to obtain similar speedups to those observed
on mesh data. And indeed, if a particle system is implemented using a C-style array, our
Morton order sorting algorithm can be applied using the particles’ coordinates, so that
operations on the particles are applied in a cache-coherent order. However, our
implementation of a Morton-sorted particle system brought to light some restrictions to
this application.

Our particle system implementation seeks to take advantage of cache coherence in two
ways: the particle array itself, and a three-dimensional array of forces. The system
contains an emitter that discharges particles in a random direction, scattering them atop a
100x100 grid. The forces acting within the space are defined by a number of masses,
which each apply a gravitational force in the space. The sum of these forces is stored in a
100x100x100 array, or “force field.” Each particle then accesses the force field each
frame to determine the forces acting upon it at the time.

With thousands of access into the force field array each frame – and potential for
thousands of cache misses – performance is highly dependent on these accesses occurring
in a cache-coherent manner. An example image from this implementation is included
below, with particles colored according to their position in the force field array. Each

Jonathan Howard Vertex Reordering for Cache Coherency

Page 6 of 10

system below contains only one force field object (approximately center-screen in both),
gravity, and particles moving at a high velocity:

Fig. 1: Particles colored according to their X (red), Y (green) and Z (blue) positions.

4.2 Results: FPS Data

The following data was obtained with the system set to emit 10 particles per frame, each
particle having a speed multiplier of 0.5 and a lifetime of 5000 frames, for a total of
50,000 particles when the system reached equilibrium. One “trial” is defined as
beginning with the particle system at equilibrium with no sorting, completing one full
sort, and then performing an incremental sort until the FPS returns to the original
“equilibrium” speed. We performed trials with various degrees of incremental sorting, as
shown in the table below:

 Initial
Stable FPS

After
Full Sort

Sorting
Time

Init. Incr.
FPS

Time to Return
to Initial FPS

0 50 60 < 1 sec -- 30 sec
1 65 80 < 1 sec 70 20 sec
2 50 60 < 1 sec 55 5 sec
4 50 60 < 1 sec 50 < 1 sec
8 50 60 < 1 sec 45 0 sec

Number
of Steps
per
Incr-
emental
Sort
(x1000) 16 70 80 < 1 sec 40 0 sec

Jonathan Howard Vertex Reordering for Cache Coherency

Page 7 of 10

At slow particle speeds, the system maintains its spatial coherence for approximately 30
to 40 seconds, as shown by frame rates above, and as estimated visually below. (In the
illustrations below, particles at the beginning of the particle array appear yellow; particles
at the end of the array appear blue.)

With no incremental sort adding to computation time, the system does not return to its
initial FPS state until approximately 30 seconds after a full sort. It would stand to reason
that if this sort were amortized over less than 30 seconds, the system would see an overall
increase in performance. However, since the incremental sort must be implemented
differently than the full sort to allow for asynchronous execution, and the incremental
version is currently too inefficient to keep the system sorted for any significant length of
time. Images from the 16000-steps-frame trial are included below to illustrate this point:

Fig. 1: System at its initial state Fig. 2: Just after a full sort.
Incremental sort begun.

Fig. 3: System 0:30 sec later. Fig. 4: System 1:00 min later.

Jonathan Howard Vertex Reordering for Cache Coherency

Page 8 of 10

Fig. 5: System 1:30 min later. Fig. 6: System 2:30 min later.

 4.3 Performance Restrictions: Inter-Frame Coherence

Most mesh data can be sorted once to obtain a cache-coherent ordering. However, many
particle systems are highly dynamic, meaning that each particle’s position on a space-
filling curve will change rapidly. Every time the position of a particle changes with
respect to its neighbors, the ideal sorting order also changes. Therefore, the more
dynamic the system becomes, the more the effect of any sorting is defeated by reordering.
The upper limit of this phenomenon would occur with very fast-moving particles, in
which every particle changes its relative position on every frame.

The amount of main memory used and the number of array accesses in our
implementation would suggest that this system would benefit greatly from cache-
coherent processing. However, the particles in our implementation moved in random
directions, and did so very quickly, so that each frame exhibited little similarity to the
frame before. Under these conditions, there is simply not enough time between frames
for the amortized sorting to affect a significant change before the particles reorder again.

Jonathan Howard Vertex Reordering for Cache Coherency

Page 9 of 10

5. Future Work

The particular characteristics of the particle system we implemented tended to counteract the
effects of our sorting algorithm. However, future work may open more possibilities for the
algorithm’s application to such systems.

As we observed, the full sorting algorithm takes less than one second, whereas its benefits
last for 30 seconds. The incremental sort – which was much less efficient – was unable to
produce results at a quick enough pace to keep up the full sort’s frame rate improvements.
However, with a more efficient incremental sorting implementation, the algorithm would
exhibit much greater success.

In addition, the algorithm will likely prove more effective in applications where these inter-
frame coherence problems are less prominent. For example, the amortized sort would have a
longer-lasting affect on performance in particle systems that contain particles with less highly
dynamic relative positions, and relative positions change less frequently. It may also prove
more effective in applications with much higher memory usage, since performance in those
cases may be more tightly bottlenecked by cache coherence.

(Note: since the problem in dynamic particle systems occurs when their low inter-frame
coherence counteracts the sorting, ever-increasing processor speeds will also enable more
sorting to be done each frame, making this method incrementally more feasible.)

6. Acknowledgments

My work on adapting Chan’s Approximate Nearest Neighbor algorithm and its
implementation in a particle system was done as part of a larger project on vertex reordering
for cache coherence at the University of Maryland, College Park. For their periodic
assistance, and for allowing me to contribute as an undergraduate, I would like to thank the
other members of the team: Amitabh Varshney, David Mount, Derek Juba, Youngmin Kim,
and Rob Patro.

Jonathan Howard Vertex Reordering for Cache Coherency

Page 10 of 10

7. References

• Nehab, D., Barczak, J., and Sander, P. V. 2006. Triangle order optimization for
graphics hardware computation culling. In Proceedings of the 2006 Symposium on
interactive 3D Graphics and Games (Redwood City, California, March 14 17, 2006).

• Martin Isenburg, Peter Lindstrom, "Streaming Meshes," vis, p. 30, IEEE Visualization
2005 (VIS'05), 2005.

• Yoon, S., Lindstrom, P., Pascucci, V., and Manocha, D. 2005. “Cache-oblivious mesh
layouts.” ACM Trans. Graph. 24, 3 (Jul. 2005), 886893.

• Sung-Eui Yoon, Peter Lindstrom, "Mesh Layouts for Block Based Caches," IEEE
Visualization 2006 (VIS'06), 2006.

