
K-mulus: A Database-Clustering Approach to Protein
BLAST in the Cloud

Carl H. Albach† Sebastian G. Angel† Christopher M. Hill† Mihai Pop
Department of Computer Science

University of Maryland, College Park
College Park, MD 20741

{calbach, sga001, cmhill, mpop}@umiacs.umd.edu

ABSTRACT
With the increased availability of next-generation sequenc-
ing technologies, researchers are gathering more data than
they are able to process and analyze. One of the most
widely performed analyses is identifying regions of similar-
ity between DNA or protein sequences using the Basic Local
Alignment Search Tool, or BLAST. Due to the large scale
of sequencing data produced, parallel implementations of
BLAST are needed to process the data in a timely manner.
In this paper we present K-mulus, an application that per-
forms distributed BLAST queries via Hadoop and MapRe-
duce and aims to generate speedups by clustering the database.
Clustering the sequence database reduces the search space
for a given query, and allows K-mulus to easily parallelize
the remaining work. Our results show that while K-mulus
offers a significant theoretical speedup, in practice the dis-
tribution of protein sequences prevents this potential from
being realized. We show K-mulus’s potential with a compar-
ison against standard BLAST using a simulated dataset that
is clusterable into disjoint clusters. Furthermore, analysis of
K-mulus’s poor performance using NCBI’s Non-Redundant
(nr) database provides insight into the limitations of clus-
tering and indexing a protein database.

General Terms
Bioinformatics, High-Performance Computing

Keywords
BLAST, Cloud Computing, MapReduce, Hadoop, Bioinfor-
matics

1. BACKGROUND
Identifying regions of similarity between DNA or protein
sequences is one of the most widely studied problems in
bioinformatics. These similarities can be the result of func-
tional, structural, or evolutionary relationships between the
sequences. As a result, many tools have been developed

†Authors contributed equally.

with the intention of efficiently searching for these similar-
ities. The most widely used application is the Basic Local
Alignment Search Tool, or BLAST[3].

With the increased availability of next-generation sequenc-
ing technologies, researchers are gathering more data than
ever before. This large influx of data has become a ma-
jor issue as researchers have a difficult time processing and
analyzing it. For this reason, optimizing the performance
of BLAST and developing new alignment tools has been a
well researched topic over the past few years. Take the ex-
ample of environmental sequencing projects, in which the
bio-diversity of various environments, including the human
microbiome, is analyzed and characterized to generate on
the order of several terabytes of data[2]. One common way
in which biologists use these massive quantities of data is
by running protein BLAST on large sets of unprocessed,
repetitive reads to identify putative genes[9, 14, 16]. Un-
fortunately, performing this task in a timely manner while
dealing with terabytes of data far exceeds the capabilities of
most existing BLAST implementations.

As a result of this trend, large sequencing projects require
the utilization of high-performance and distributed systems.
However, most researchers do not have access to these com-
puter clusters, due to their high cost and maintenance re-
quirements. Fortunately, cloud computing offers a solution
to this problem, allowing researchers to run their jobs on
demand without the need of owning or managing any large
infrastructure. The speedup offered by running large jobs
in parallel, as well as the opportunities for novel reduction
of the BLAST protein search space [13, 19], are the moti-
vating factors that led us to devote this paper to effectively
parallelizing protein BLAST (blastx and blastp).

One of the original algorithms that BLAST uses is ’seed and
extend’ alignment. This approach requires that there be at
least one k-mer (sequence sub-string of length k) match be-
tween query and database sequence before running the ex-
pensive alignment algorithm between them [3]. Using this
rule, BLAST can bypass any database sequence which does
not share any common k-mers with the query. Using this
heuristic, we can design a distributed version of BLAST us-
ing the MapReduce model. One aspect of BLAST which we
hoped to take advantage of was database indexing of k-mers.
While some versions of BLAST have adopted database k-
mer indexing for DNA databases, it seems that this approach
has not been feasibly scaled to protein databases[13]. For

this reason, BLAST iterates through nearly every database
sequence to find k-mer hits. K-mulus attempts to optimize
this process by using lightweight database indexing to allow
query iteration to bypass certain partitions of the database.

In this paper we present K-mulus, an application which dis-
tributes queries over many database clusters and produces
output which is equivalent to that of BLAST. K-mulus aims
to achieve speedups by generating database clusters which
enable the parallelization of BLAST and reduction of the
search space. After the database is partitioned by cluster,
a lightweight k-mer index is generated for each partition.
During a query, the k-mers of the query sequences can be
quickly compared against these indices to determine if the
cluster contains potential matches. In this way, a query se-
quence need only be compared against a subset of the origi-
nal database, thereby reducing the search space. Note that
the speed of K-mulus is completely dependent on cluster
variance; if a query sequence matches every partition index,
there is no reduction in search space.

mpiBLAST [5] is a popular distributed version of BLAST,
which can yield super-linear speed-up over running BLAST
on a single node. mpiBLAST works by segmenting the
database into equal-sized chunks and distributing these chunks
among the available nodes. All nodes then proceed to search
the entirety of the query set against all chunks of the database.
The results from individual nodes are later aggregated. Al-
though K-mulus and mpiBLAST ’s both divide the database
into smaller chunks, mpiBLAST chunks the data arbitrarily,
while K-mulus does so according to similarity-based cluster-
ing.

Another parallel implementation of BLAST is CloudBLAST [11].
CloudBLAST uses the MapReduce paradigm with Hadoop
to parallelize BLAST. Whereas mpiBLAST segments the
database, CloudBLAST’s parallelization approach involves
segmenting the queries.

K-mulus differs from the previous parallel implementations
of BLAST by using similarity-based clustering of the database
along with the creation of a database index for each cluster.
There is a large potential advantage to our approach. K-
mulus identifies each cluster by a center which allows us
to determine whether or not a query will find a match in
the corresponding segment of the database. This optimiza-
tion has the potential to dramatically reduce the search
space for each individual query, thus eliminating unneces-
sary searches.

There are a few advantages of using the MapReduce [6]
framework over other existing parallel processing frameworks.
The entirety of the framework rests in two simple methods,
a mapper and a reducer. During the mapper, input is dis-
tributed among all nodes that were assigned to the task of
mapping. Each node processes the input in a particular way
according to the developer’s specifications, and outputs a
key-value pair. Once all nodes have finished outputting all
their key-value pairs, all the values for a given key are ag-
gregated into a list, and are sent to the reducer. During
the reduce phase, the (key, list of values) pairs are received.
This list of values is used to compute the final result accord-
ing to the application’s needs. For instance, if a developer

wanted to count the number of occurrences of each of the
words in a body of text, they could design a MapReduce
application that would do this in parallel with little to no
effort. Initially, they would feed the body of text as the
input. Individual words from the file would be distributed
evenly among all available nodes. The mappers would out-
put key-value pairs of the form (word, 1). Finally, when all
mappers have finished, the reducers will each get a key, and
a list of values. In this case, the list of values is exclusively
composed of 1s. The reducer would then aggregate all the
entries in the list, and output the final key-value pair, which
corresponds to (word, count).

Another advantage of the MapReduce framework is that it
abstracts the communication between nodes, thus allowing
software developers to run their jobs in parallel over poten-
tially thousands of processors. Although this makes it simple
to program, without direct control of the communication, it
may be inefficient.

Lastly, MapReduce has become a de-facto standard for dis-
tributed processing, thus the code written will be very portable.

The MapReduce framework is tightly integrated with a dis-
tributed file system allowing it to coordinate computation
with the location of the data. Google Distributed File Sys-
tem (GFS) [7] is one such implementation. Files in GFS
are partitioned into smaller chunks and stored distributively
among a cluster of computers. A master node is responsi-
ble for storing the metadata, such as chunk locations per
file and their replicas, and granting access to said chunks.
MapReduce attempts to schedule computation at the nodes
storing the input chunks. However, given that GFS is pro-
prietary, Hadoop[4], an open-source distributed file system
has it’s own spin on MapReduce. Applications built using
the Hadoop framework only need to specify the map and
reduce functions. Hadoop has become the de-facto stan-
dard for cloud computing, a model of parallel computing
where infrastructure is treated as a service. The end users,
or application developers, need not worry about the main-
tenance or cluster configuration. An example of a popu-
lar cloud computing provider is Amazon’s Elastic Compute
Cloud (EC2)[1]. K-mulus is implemented using the MapRe-
duce framework so it can be easily integrated with both
public and private clouds.

2. DESIGN
Our model is divided into two sections. First, we present a
methodology for dividing the existing database into smaller
clusters and generating indices for each cluster. This is the
preprocessing step for K-mulus. Second, we consider the
process by which a query is executed in K-mulus.

In order to cluster the database, we used a collection of clus-
tering algorithms: k-means[8], k-medoid[18], and our own
MapReduce efficient hierarchical clustering. We also keep
track of the centers for each cluster as they play the crucial
role of identifying membership to a cluster. Fig 1. shows a
high level view of our pre-processing model. We further ex-
plain the details involved in clustering the existing database
in Section 3, as well as our preliminary results in Section 4.

After the database has been clustered, we compare the input

Database

db1 db2 db3 · · · dbk

K −Means/Partition

C1 C2 C3 Ck

Figure 1: The database is partitioned into k smaller
disjoint clusters using the k-means clustering algo-
rithm. The center of each cluster is tracked as they
are fundamental for subsequent parts of K-Mulus.

query sequences to all centers. This comparison is explained
in detail in Section 3. The key idea is that by comparing the
input query sequence to the cluster centers, we can deter-
mine whether a potential match is present in a given cluster.
If this is the case, we run the NCBI BLAST algorithm on
the query sequence and the database clusters that we deter-
mined as relevant for the query. Fig 2. shows a diagram of
the post-processing step carried out by K-mulus.

2.1 Pre-processing
Since text input by default is split on newlines in MapRe-
duce, the sequences are transformed from FASTA format to
simpleFasta format, where each sequence shares the same
line as its header, separated by a single white space. In the
future, we plan on implementing a custom Hadoop Input-
Format that can read native FASTA formatted files.

2.2 Database-specific
First the database sequences are transformed into simple-
Fasta format and uploaded to HDFS. A k-mer presence vec-
tor is created for each sequence. The details of the k-mer
presence vector are described in Section 3. During the map
phase, each sequence is emitted as a k-mer presence vector.
This vector has 20k entries, one for each possible k-mer.
These vectors are then clustered using one of the clustering
algorithms detailed below. For each cluster, a center vector
is produced that is the union of all k-mer presence vectors
of the cluster. In other words, the center vector represents
all k-mers present in the cluster.

In the final stage of database preparation, the formatdb
program is used to build BLAST databases for each clus-
ter. The resulting collection of BLAST databases are zipped
and uploaded back to HDFS. The databases have to be

zipped because the HDFS namenode stores each file, regard-
less of size, as a series of 128MB chunks. Compressing the
databases into a single archive not only dramatically saves
HDFS space, but makes it simpler to load all databases to
each machine during the BLAST MapReduce. In the future,
the user will be able to download the clusters of the NCBI
Non-Redundant database from our website.

2.3 Clustering
K-mulus attempts to minimize the amount of k-mer over-
lap between different clusters of sequences. If two clusters
share a high percentage of k-mers in common, then a query
that shares a k-mer with one cluster has a higher chance of
overlapping with the other. The query will then be sent to
both clusters during the reduce phase of K-mulus described
below. Determining the correct number of clusters is very
important. If the number of clusters is decreased, the k-mer
overlap between clusters increases. The percentage of k-mer
overlap of different numbers of clusters is discussed in the
results.

K-mulus only clusters the database sequences. We consid-
ered clustering the query sequences as well, but decided not
to for several reasons. The advantages of clustering the
query sequences are that it requires slightly less network
overhead in Hadoop to move a cluster of queries instead of
single queries, and that it requires less computation to com-
pare the k-mers of cluster centers against database centers,
than to compare all query k-mers against database centers.
However, the k-mer look up is quite fast already, as it can
be done on the order of the length of the query. The trade
off for this approach is that overlapping the k-mers of two
clusters is inherently noisier than overlapping one query to
a cluster. This means that each sequence will be mapped to
more partitions of the database which results in unnecessary
work by BLAST. Furthermore, this approach incurs the cost
of performing the query clustering.

By default BLAST ignores regions of low complexity in the
input by repeat masking. For proteins, BLAST uses the
SEG program to mask both the query and database se-
quences [20]. K-mulus similarly masks low complexity se-
quences within the query and database to spurious matches
cause by such regions. Since K-mulus uses an approach iden-
tical to that of BLAST in this regard, this optimization of
K-mulus causes no loss of sensitivity when compared to a
normal BLAST search.

2.4 BLAST
The actual BLAST step of K-mulus is a single MapReduce
job. The query protein sequences are converted into sim-
pleFasta format, and uploaded to HDFS. At the start of
the MapReduce job, the compressed archive of all previ-
ously compiled BLAST databases are added to Hadoop’s
DistributedCache. Archived files added to the Distributed-
Cache are extracted to the local working directory of each
compute node that executes a map or reduce function. This
way we can effectively transfer the databases and BLAST
binaries provided by the user to use during the reduce step.

Prior to the map phase, each computing node loads the k-
mer presence vectors of the cluster centers. The centers
are only loaded once per node, regardless of the number

C1 C2 C3 · · · Ck

Repeat

Masking
K −mer FilterSequences

Seq1

Seq2

Seq3

Seqn

...

Seq′1

Seq′2

Seq′3

Seq′n

...

(db1, Seq
′
2, Seq

′
4, Seq

′
11)

(db2, Seq
′
5, Seq7)

(db3, Seq
′
8, Seq

′
22)

(dbn, Seq
′
3, Seq

′
31, Seq

′
n)

...

BLAST

Figure 2: K-mulus takes a collection of protein sequences and BLASTs them against a collection of databases.
First, the query’s low complexity regions are masked, then each query is compared to the cluster center k-
mer vectors. If the query shares a k-mer with a cluster center, the query is sent to the core responsible for
running BLAST with that cluster’s database.

of map functions the node is responsible for. During the
map phase, each k-mer is checked against all cluster centers’
presence vectors. If a cluster contains a given k-mer, then
that sequence must be aligned to some sequence within that
cluster. Therefore, if there exists a shared k-mer between
the query sequence q and a cluster center c, then the mapper
emits(c, q).

The reducer aggregates all query sequences that share a k-
mer with a given cluster. These query sequences are written
to a temporary file on the local disk of the reduce node.
The reduce node then forks a child process that executes
the BLAST binary along with any arguments passed by the
user. The BLAST binary determines which database to load
based on the key received. The output of the forked process
is captured and redirected to the reducer’s output.

2.5 Post-processing
Since BLAST takes into account the size of the database
when computing alignment statistics, the individual BLAST
results must have their scores adjusted for the database seg-
mentation. In order to determine the k and λ values, a
test query of one sequence is run against the entire non-
segmented database.

3. METHODS DETAILS
3.1 Presence Vector
In the context of this paper a Presence Vector is a vector of
bits in which the value at each position indicates the pres-
ence of a specific sequence K-mer. The index of each K-mer
in the vector is trivial to compute.

3.2 Clustering
We considered three different clustering algorithms for use
in K-mulus: K-means, K-medoids, and a modified form of
hierarchical clustering. Pseudo-code for these algorithms is
given below in addition to details about our hierarchical clus-
tering algorithm

We used a modified form of agglomerative clustering to per-
form hierarchical clustering on the database sequences. This
general algorithm uses a simple bottom-up approach, in

which all sequences begin in disjoint clusters of size one,
and are iteratively merged together with the nearest cluster
[10]. Implementations of agglomerative clustering are differ-
entiated by the distance function used to compare clusters.

Our algorithm performs clustering with respect to the pres-
ence vectors of each input sequence. For each cluster, a cen-
ter presence vector is computed as the union of all sequence
presence vectors in the cluster. The distance between clus-
ters is taken as the Hamming distance, or number of bitwise
differences, between these cluster centers. This design choice
creates a tighter correspondence between the clustering al-
gorithm and the metrics for success of the results, which
depend entirely on the cluster presence vectors as computed
above.

Note that this algorithm requires the intensive computation
of all-pairs distances at every clustering iteration. For this
reason, a novel algorithm was used to efficiently make these
computations in the cloud. This algorithm is described in
detail in the next section.

Algorithm 1 Hierarchical Clustering Algorithm (Modified)

1: Define each input presence vector as a cluster c
2: repeat
3: for all Clusters c do
4: Assign c.k as the union of all presence vectors in c
5: end for
6: Compute all pairwise distances for all c.k
7: repeat
8: Merge the two clusters c1, c2 with the shortest dis-

tance
9: until All previous clusters c have been merged

10: until One cluster remains

3.3 Efficient Distributed All-Pairs
We initially considered clustering the query sequences, in
addition to clustering the database sequences. We decided
not to explore this option, for reasons mentioned elsewhere
in the paper. However, we recognize that for some applica-
tions, such an approach would be useful. Query clustering
may require all pairwise distances to be computed in parallel,

Algorithm 2 K-Means Algorithm

1: Select k centroids randomly
2: repeat
3: for all i in the database do
4: Assign i to the cluster with the closest centroid
5: end for
6: for all Clusters c do
7: c← 1

|c|
∑

s∈c s

8: end for
9: until Centroids do not move

Algorithm 3 K-Medoid Algorithm

1: Select k centroids randomly
2: repeat
3: for all i in the database do
4: Assign i to the cluster with the closest centroid
5: end for
6: for all Clusters c do
7: for all Elements e in cluster c do
8: Find e such that it minimizes the total distance

to all other e in c
9: Make e the new centroid of cluster c

10: end for
11: end for
12: until Centroids do not move

and for this reason we include our efficient distributed all-
pairs algorithm which we used for clustering of the database
sequences.

It is trivial to use Hadoop to perform exactly n(n−1)
2

com-
parisons. However, naive use of memory and network over-
head can lead to run times which can be worse than serial
[12]. Our algorithm maps a sizable number of comparisons
to each node, which reduces overhead. Furthermore, for the
given workloads, our algorithm minimizes network overhead
and guarantees that each comparison occurs only once. An
implication of this is that for all data a node receives, it
may freely compute all pairs within that set without any
global duplication of work. Proof of this point is trivial
when you consider that in any other configuration (where
some available comparisons are not executed at the node),
fewer comparisons per sequence are being done at the node.
It follows that such a configuration will require a strictly
larger amount of overall data movement.

The above is achieved through projective geometry. In pro-
jective geometry a projective plane, the simplest of which is
shown in Fig 3, has the following properties:

• For all pairs of distinct points, there is exactly one line
which contains that pair.

• For any pair of lines, there is exactly one point at which
they intersect.

• There exist four points such that no line intersects
more than two of them.

Allow me to equate ’lines’ to our task input groups, and
’points’ to the data items. Using this transformation with

7

4

35 6

12

Figure 3: Fano Plane

bullet one, it follows that for all pairs of items, there is
exactly one group which contains that pair. A configuration
of data distribution such as this meets the condition listed
above, and is therefore an optimal distribution of data for
clusters of that size.

Projective planes of order p can be calculate trivially, where
p is a prime power and the plane has a capacity for p2 + p+
1 points. There are some complications to this algorithm
which arise as a result of this restriction on p. For input
sizes which vary from this order, additional positions must
be ’padded’ out and some efficiency is lost. Overall, this
algorithm is very efficient in the average case for performing
intensive all pairs comparisons.

4. RESULTS
Common BLAST word sizes range from 2-5, thus we experi-
mented with k-mers of size 2-5[15]. For all subsequent anal-
yses we used 3-mers. While three different clustering algo-
rithms were considered in this paper, all subsequent K-mulus
results were generated with k-means clustering (explanation
below). In BLAST, neighboring words are k-mers which are
biologically similar to a given k-mer within a certain thresh-
old. In our results, neighboring words are not considered
during K-mulus database indexing. This had a negligible
effect on results as nearly all queries already matched every
cluster index.

4.1 Speedup Potential
First we will show that K-mulus achieves significant speedups
on well clustered data. To demonstrate this we simulated an
ideal data set of 1,000 sequences, where the sequences were
comprised of one of two disjoint sets of 3-mers. The database
sequences were clustered into two even-size clusters. The
sample query was 10,000 sequences, also comprised of one
of two disjoint sets of 3-mers. Table 1 shows the result of
running BLAST on the query using Hadoop Streaming with
query segmentation (the method CloudBLAST uses to run
BLAST) and K-mulus. K-mulus running on 2 cores with 2
databases yields a 225% improvement over running BLAST
using Hadoop Streaming on 2 cores. In practice this de-
gree of separability is nearly impossible to replicate, but
this model allows us to set an upper bound for the speedup
contributed by clustering and search space reduction.

4.2 K-mulus in Practice

A more practical BLAST query would be using the nr database,
containing 3,429,135 sequences. K-mulus is compared against
the naive Hadoop streaming method using a realistic query
of 30,000 sequences from the HMP project (Table 2). K-
mulus performs poorly compared to the default Hadoop Stream-
ing BLAST implementation because of the very high k-
mer overlap between clusters. Due to the high k-mer over-
lap, each query sequence is being replicated and compared
against nearly all clusters. Since the complete nr database
can fit into memory, we achieve no benefit from segmenting
the database. Running K-mulus with 100,000 clusters per-
forms slightly worse compared to only 100 clusters because
of the additional overhead of rebuilding the query index for
each BLAST instance.

5. DISCUSSION
In our nr query results, K-mulus shows poor performance
due entirely to noisy, overlapping clusters. In the worst case,
K-mulus will map every query to every cluster and devolve
to a naive parallelized BLAST on database segments, while
also including some overhead due to database indexing. This
is close to the behaviour we observed when running K-mulus
on the nr database. In order to describe the best possible
clusters we could have generated from a database, we consid-
ered a lower limit on the exact k-mer overlap between single
sequences in the nr database (Fig 4). We generated this plot
by taking 50 random samples of 3000 nr sequences each,
computing the pairwise k-mer intersection between them,
and plotting a histogram of the magnitude of pairwise k-
mer overlap. This shows that there are very few sequences
in the nr database which have no k-mer overlap which makes
the generation of disjoint clusters impossible. Furthermore,
this plot is optimistic in that it does not include BLAST’s
neighboring words, nor does it illustrate comparisons against
cluster centers which will have intersection greater than or
equal to that of a single sequence.

In order to show the improvement offered by repeat mask-
ing, we ran SEG[20] on the sequences before computing the
intersection. On average, SEG resulted in a 6% reduction
in the number of exact k-mer overlap between two given
sequences. Repeat masking caused a significant, favorable
shift in k-mer intersection and would clearly improve clus-
tering results. However, the nr database had so much exist-
ing k-mer overlap that using SEG preprocessing would have
almost no effect on the speed of K-mulus.

While we considered three different clustering algorithms in
this paper, we determined that the cluster overlap was so
excessive that any difference between the clustering output
was negligible. For this reason, we exclusively used K-means
clustering for our analysis.

6. FUTURE WORK
While K-mulus did not meet the goals set forth in this pa-
per, it has great potential as a platform for improving dis-
tributed BLAST performance. The logical next step for K-
mulus is nucleotide database indexing, which has histori-
cally had far more success than protein indexing in BLAST.
With a four character alphabet and simplified substitution
rules, nucleotides are much easier to work with than amino
acids, and allow for much more efficient hashing by avoid-
ing of the ambiguity inherent in amino acids. Furthermore

Hadoop Streaming K-mulus
1 core 15 mins, 38 sec 6 mins, 55 sec
2 cores 9 mins, 48 sec 4 mins, 25 sec

Table 1: Runtimes of BLAST using Hadoop Stream-
ing and K-mulus on a query of 10,000 protein
sequences. K-mulus is run with two clustered
databases which contain no overlapping k-mers. K-
mulus running on 2 cores with 2 databases yields
a 225% improvement over running BLAST using
Hadoop Streaming on 2 cores.

Method Time
Hadoop Streaming 0 hr, 39 mins
K-mulus 100 clusters 1 hr, 50 mins
K-mulus 10,000 clusters 2 hr, 17 mins

Table 2: Runtimes of BLAST using Hadoop Stream-
ing and K-mulus using the nr database on a query
of 30,000 sequences on 100 cores. K-mulus is run us-
ing both 100 and 10,000 clusters to compare perfor-
mance. Due to the low variance of k-mers between
sequences in nr, K-mulus performs poorly compared
to Hadoop Streaming. K-mulus with 10,000 clusters
performs worse than K-mulus with 100 clusters be-
cause of the additional overhead of query indexing
between BLAST instantiations.

Sheet1

Page 1

0
12

24
36

48
60

72
84

96
1084

8 16
20 28

32 40
44 52

56 64
68 76

80 88
92 100

104 112
116

120
124

128
132

136
140

144
148

152
156

160
164

168
172

176
180

184
188

192
196

200
204

208
212

216
220

224
228

232
236

240
244

248

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

Samples K-mer Intersection Frequencies

With Repeat Masking
Original Sequences

Number of K-mer Intersections

F
re

q
u

e
n

cy
 o

f O
cc

u
rr

e
n

ce

Figure 4: A histogram of the number of exact pair-
wise k-mer intersections within a set of nr database
sequences. 50 samples of 3,000 random sequences
were taken from nr and repeats were masked by
SEG[20]. K-mer overlaps were plotted pairwise
within each original sample and each masked sam-
ple. At a high level, this plot indicates k-mer vari-
ance in nr. Lower magnitudes of intersection imply
better possible clusters and improved K-mulus per-
formance.

we expect a more random distribution of nucleotide k-mers
than amino acids k-mers, which allows for better clustering.
While we chose to pursue improvements to protein BLAST,
in our analysis it has become clear that a K-mulus nucleotide
BLAST not only has a promising outlook for a speedup, but
could serve as a model for effectively executing the more
complex task of protein clustering.

Our work did not include analysis of any clustering or index-
ing methods which would have resulted in a loss of BLAST
search sensitivity. For example, K-mulus clustering might
benefit from the positive results shown for protein k-mer in-
dexing of large k-mers over compressed alphabets[17]. An-
other possible improvement would be to map queries accord-
ing to percent k-mer identity to a cluster, or to raise the
threshold for required k-mer overlap with a cluster index.
While these approaches would reduce BLAST sensitivity,
the trade off with search speed may be favorable. The moti-
vation for this work comes from our evidence that if protein
clustering in K-mulus can be improved, large speedups can
be achieved.

7. REFERENCES
[1] Amazon elastic compute cloud.

http://aws.amazon.com/ec2/.

[2] Human microbiome project.
http://commonfund.nih.gov/hmp/, 2006.

[3] Stephen F. Altschul, Warren Gish, Webb Miller,
Eugene Myers, and David Lipman, Basic local
alignment search tool, Journal of Molecular Biology
215 (1990), 403 – 410.

[4] Dhruba Borthakur, The Hadoop Distributed File
System: Architecture and Design, The Apache
Software Foundation, 2007.

[5] Aaron E. Darling, Lucas Carey, and Wu chun Feng,
The design, implementation, and evaluation of
mpiblast, In Proceedings of ClusterWorld 2003, 2003.

[6] Jeffrey Dean and Sanjay Ghemawat, Mapreduce:
simplified data processing on large clusters, Commun.
ACM 51 (2008), 107–113.

[7] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung, The google file system, SIGOPS Oper. Syst.
Rev. 37 (2003), 29–43.

[8] J. A. Hartigan and M. A. Wong, A K-means clustering
algorithm, Applied Statistics 28 (1979), 100–108.

[9] Ying Li, Hong M. Luo, Chao Sun, Jing Y. Song,
Yong Z. Sun, Qiong Wu, Ning Wang, Hui Yao, Andre
Steinmetz, and Shi L. Chen, Est analysis reveals
putative genes involved in glycyrrhizin biosynthesis,
BMC Genomics 11 (2010), no. 1, 268+.

[10] Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze, Introduction to information retrieval,
Cambridge Univ. Press, New York, NY, 2008.

[11] Andréa Matsunaga, Mauŕıcio Tsugawa, and José
Fortes, Fourth ieee international conference on
escience cloudblast: Combining mapreduce and
virtualization on distributed resources for
bioinformatics applications.

[12] C. Moretti, J. Bulosan, D. Thain, and P.J. Flynn,
All-pairs: An abstraction for data-intensive cloud
computing, Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, april

2008, pp. 1 –11.

[13] Aleksandr Morgulis, George Coulouris, Yan Raytselis,
Thomas L. Madden, Richa Agarwala, and
Alejandro A. Schäffer, Database indexing for
production megablast searches, Bioinformatics 24
(2008), 1757–1764.

[14] J Murray, J Larsen, T E Michaels, A Schaafsma, C E
Vallejos, and K P Pauls, Identification of putative
genes in bean (phaseolus vulgaris) genomic (bng) rflp
clones and their conversion to stss., Genome 45
(2002), no. 6, 1013–24.

[15] NCBI, Ncbi c++ toolkit book,
http://www.ncbi.nlm.nih.gov/books/NBK7160/pdf/TOC.pdf.

[16] J. Schloss, E. Mitchell, M. White, R. Kukatla,
E. Bowers, H. Paterson, and S. Kresovich,
Characterization of rflp probe sequences for gene
discovery and ssr development in sorghum bicolor (l.)
moench., Theor Appl Genet 105 (2002), no. 6-7,
912–920.

[17] Sergey A. Shiryev, Jason S. Papadopoulos,
Alejandro A. Schäffer, and Richa Agarwala, Improved
blast searches using longer words for protein seeding,
Bioinformatics 23 (2007), no. 21, 2949–2951.

[18] Mark Van Der Laan, Katherine Pollard, and Jennifer
Bryan, A new partitioning around medoids algorithm,
Journal of Statistical Computation and Simulation 73
(2003), no. 8, 575–584.

[19] Hugh E. Williams and Justin Zobel, Indexing
nucleotide databases for fast query evaluation, EDBT,
1996, pp. 275–288.

[20] John C. Wootton and Scott Federhen, Statistics of
local complexity in amino acid sequences and sequence
databases, Computers and Chemistry 17 (1993), no. 2,
149 – 163.

