Cryptanalysis of Mobile Phone Cryptology

Joshua Neel

University of Maryland at College Park

Mentored by: Lawrence C. Washington

1.0) Introduction

As cellular phones, personal digital assistants, and other wireless handheld devices become popular, the need for secure transfer of wireless digital data becomes more and more important. Several encryption techniques have already been employed, and many have been broken which increases the need for higher levels of security. These paper reviews two encryption techniques currently used in mobile phones today, and gives a description of a technique I created, that I believe to have a higher level of security.

2.0) Global System for Mobile Communications (GSM)

Mobile Phone Cryptography

2.1) Introduction:

The GSM mobile phone cryptography techniques are employed in phones used by over 150 million GSM customers in Europe to protect the privacy of their cellular voice and data communication (Shamir). When a customer wishes to establish communication over their cellular phone, they are first authenticated by a challenged-response digital signature scheme, for billing purposes etc. After the customer has been authenticated, they can then transfer information encrypted using a key based stream-cipher algorithm known as A5. There have been two versions of A5, namely A5/1 and A5/2. A5/2 is a less secure algorithm and is no longer used. The algorithm currently used in Europe is the A5/1. An approximation to the A5/1 algorithm was leaked in 1994, which drew attention to attacks on GSM phones. Five years later, the designs for both the A5/1 and A5/2 were reverse engineered using an actual GSM phone. Now that the design for the A5/1 algorithm is known, attacks have been discovered that can successfully break the system. However these attacks require a lot of disk storage, or a lot of processing power leaving the GSM system reasonably secure.

2.2) Overview:

The general overview of how the system works is as follows. Suppose Alice is a GSM customer and wants to place a secure call on her GSM phone. Inside her phone is a Subscriber Identity Module, also known as a SIM card. The SIM card contains a private key Ki that uniquely identifies Alice’s phone. The key is also stored in a private database in a GSM base station. Also stored on Alice's SIM card is a one-way hash function known as A3. When Alice's phone establishes a connection to the GSM network, the phone receives a 128 bit random number RAND from a base station. Alice's phone then computes a signed response SRES = A3(RAND, Ki) and sends it back to the base station. Mean while the base station makes the same computation and compares it to the SRES sent by Alice's phone. If the numbers match then Alice is authenticated and may continue otherwise Alice receives an authentication failure and the connection is dropped.

After Alice is authenticated, her phone gets a 64 bit ciphertext key Kc that is computed using another one-way key based hash function called A8 with the same RAND used in authentication, i.e. Kc = A8(RAND, Ki). Then Kc is fed into the A5 algorithm stored on Alice's phone and all the data transfer from then on is encrypted using the A5 algorithm. Mean while the base station performs the same computations and uses the key Kc with the A5 algorithm to decrypt the data sent by Alice. Note that in both the authentication and in the data transfer, neither of the keys are transmitted over the network since the base station has the information necessary to produce both of the keys. A summary of the process is shown in the diagram below.

[image: image1.wmf]MOBILE

RADIO INTERFACE

FIXED NETWORK

Challenge R

Response SRES

A3

Ki

A3

Ki

A5

A5

ENCRYPTED DATA

A8

Kc

A8

Kc

Key

SIM

?

Above diagram may be found in (http://www.zeata.demon.co.uk/gsmdoc.doc)
2.3) Description of the A5/1 algorithm:

If Alice places a cellular call to Bob over the GSM network, the conversation data is sent in frames of 228 bits every 4.6 milliseconds. 114 bits of the frame correspond to data from Alice to Bob, and the other 114 bits correspond to data from Bob to Alice. When the base station authenticates Alice, her phone uses the 64-bit ciphertext key Kc to initialize the stream cipher algorithm A5/1. The A5/1 algorithm then produces 228 pseudo-random bits for each frame of data. The pseudo-random bits are then XOR-ed with each data frame to create a frame of ciphertext that is sent to the base station. The base station performs the same initialization to get the same 228 pseudo-random bits and XOR-s them with the ciphertext sent by Alice's phone to decrypt the data.

The A5/1 stream cipher is composed of three small linear feedback shift registers R1, R2, and R3 that have 19, 22, and 23 bits respectively, and a 22 bit frame counter Fn. Each register is shifted right to left, using clock cycles that are determined by a majority system. The majority system is determined using three bits C1, C2, and C3. C1 is the 8th bit of R1, C2 is the 10th bit of R2, and C3 is the 10th bit of R3, where the bits are numbered from right to left starting at 0. Between the bits C1, C2, C3 if two or more of them are 0 then the majority m = 0, similarly if two or more of them are 1 then the majority m = 1. If C1 = m then R1 is shifted, if C2 = m then R2 is shifted, and if C3 = m then R3 is shifted. Also during each cycle bits 13,16,17 and 18 of R1 are XOR-ed and fed into bit 0 of R1. Bits 20, and 21 of R2 are XOR-ed and fed into bit 0 of R2. Bits 7,20,21,22 of R3 are XOR-ed and fed into bit 0 of R3. After each cycle the last bits of each register are XOR-ed to produce one bit of output. This process is summarized in the following diagram.

[image: image2.png]m=Majority (C1. €2, C3)

Figure 1: The A5/1 stream cipher.

The above diagram can be found in (http://cryptome.org/a51-bsw.htm)

The process of generating the pseudo-random bits from the key Kc are done in four main steps:

·
In the first step, all the registers are zeroed out. Then bit by bit starting from the least significant bit of Kc, each of the 64 bits is fed into the three registers in parallel, ignoring the majority system. During each cycle the bit from Kc is fed in by doing an XOR with bit 0 of each register.

·
In step 2, the 22 bits of the frame counter Fn are fed in using the same process Kc was fed in step 1.

·
In step 3, 100 additional cycles are performed using the majority system, but without any output.

·
Finally in step 4, another 228 cycles are performed to get the 228 pseudo-random bits.

2.4) Attacks:

It is worthy to note that the entire security of the GSM model relies on keeping the key Ki a secret. GSM attackers have successfully been able to clone a GSM phone. Therefore if they could obtain a customers key they could use it in the clone to act as a valid customer in the GSM network. The GSM network's only defense on this is to terminate service of a customer whose key is used more than once at the same time. However this does not prevent the clone from listening in on conversations.

If one has physical access to a GSM Phone, they could use traditional attacks on hash functions, such as birthday attacks to obtain the key. Similar attacks allowed an attacker to obtain the key with 8 hours of physical access to a phone (Pesonen). Some attacks that have been successful flaunt implementation flaws such as the fact that someone discovered the last 10 bits of the key Kc are always zero (Shamir). This reduces the number of possible keys Kc by a factor of 210 = 1024.

It isn't always possible to obtain the phone you want to listen in on for 8 hours to obtain the key. Therefore, most of the time you would only be able to intercept ciphertext generated by the A5 algorithm. The basis for most of the known ciphertext attacks is the golic-time memory trade off. The idea behind it, is that if the encryption algorithm has a small enough number of initial states then you can store the outcomes of the initial states and compare the ciphertext to the stored states to deduce the initial state the ciphertext was generated.

Since the initial state of the A5 algorithm is based on the 64 bit key Kc, without assuming the last 10 bits are zero, then there is 264 bit initial states. Each initial state can be uniquely identified with 64 bits of the keystream. Therefore one could store each of the 264 initial states coupled with the first 64 bits of keystream they produce. Then the known keystream can be compared to the stored keystreams to deduce the initial state. However this attack requires 64 * 264 = 270 bits of storage space. This is a highly unfeasible amount of storage space to attempt the attack. However, other attacks have been created using the above procedure in mind but they are optimized to be able to be run on a personal computer. These types of attacks require a mass amount of storage, however, when implemented well they are very successful at breaking the system. For example one type of these attacks which is a biased-birthday attack requires 146 gigabytes of storage, but can break the system in a second with two minutes of ciphertext. Similarly, another algorithm known as a random subgraph attack requires 292 gigabytes of storage, but can break the system in minutes with only 2 seconds of ciphertext. See (Shamir) for descriptions of these attacks.

Overall, while the current attacks on GSM are possible they are very expensive. This leaves the GSM model with a decent level of security. Since breaking the system is possible at a cost, it may not be the best method to trade war secrets, but it is a reasonable defense against the average hacker.

3.0) ORYX

3.1) Introduction:

While the Global Systems for Mobile Communications have developed cryptology standards which are employed in Europe, the Telecommunications Industry Association (TIA), have developed standards used in North America (Wagner). The standard that is currently used to encrypt wireless digital data is known as the ORYX cipher. Similar to the A5/1 algorithm used in GSM phones, the ORYX cipher is based on linear feedback shift registers.

3.2) Overview:

The ORYX cipher is a stream cipher that is used as a keystream generator. The output of the generator is a pseudo-random stream of bytes. The byte stream is XORed with the plaintext to produce the ciphertext, and XORing the ciphertext with the same pseudo-random byte stream performs decryption.

3.3) Description of ORYX:

The ORYX cipher is composed of four main components, which include three 32-bit linear feed back shift registers, and an S-box (Wagner). The three shift registers will be referred to as LFSRA, LFSRB, and LFSRK. The S-box holds a permutation of the numbers 0 – 255, i.e. a permutation for one byte, which will be referred to as L.

The linear feedback function used for LFSRK is as follows…

PK: xn+1 = xn32 + xn28 + xn19 + xn18 + xn16 + xn14 + xn11 + xn10 + xn9 + xn6 + xn5 + xn + 1

LFSRA uses two feed back functions, which are…

PA1: xn+1 = xn32 + xn26 + xn23 + xn22 + xn16 + xn12 + xn11 + xn10 + xn8 + xn7 + xn5 + xn4 + xn2 + xn + 1
PA2: xn+1 = xn32 +xn27 +xn26 +xn25 +xn24 +xn23 +xn22 +xn17 +xn13 +xn11 +xn10 +xn9 +xn8 +xn7 +xn2 +xn +1

and the shift register LFSRB uses the following function …

PB: xn+1 = xn32 + xn28 + xn19 + xn18 + xn16 + xn14 + xn11 + xn10 + xn9 + xn6 + xn5 + xn + 1

(Wagner).

The permutation L does not change throughout the call. It is produced by a known algorithm that is initialized with a value that is transmitted in the clear during the call setup (Wagner).

Each byte of keystream is generated in the following manner:

1) LFSRK is stepped once with the function PK
2) LFSRA is stepped once using either function PA1 or PA2. The decision of which function is to be used is based on one of the high eight bits of LFSRK.

3) LFSRB is stepped either once or twice depending on another one of the high eight bits of LFSRK.

4) The high byte of LFSRK is added to the high byte of LFSRA after being permuted with L and the high byte of LFSRB after being permuted with L, modulus 256 to create one byte of keystream. i.e. Keystream = (High8K + L[High8A] + L[High8B]) mod 256

See the diagram below.

[image: image3.png][
Ak

Sbax

ORYX Cipher

LESRy gk O

3.4) Attack:

The bits in the high byte of LFSRK which determine the key schedule for LFSRA, and LFSRB may vary according to implementation. However they remain unchanged throughout the keystream generation and are assumed to be known an attacker. Therefore, since the keystream algorithm is known, the only unknown to an attacker is the initial contents the three 32-bit linear feedback shift registers. Therefore ORYX can be thought to have a 96-bit keyspace. It is not very realistic to either guess, or try all possible initial states since there are 296 possible initial states. However, if an attacker can obtain a part of the keystream produced by ORYX, it will be shown that it is possible for them to guess smaller portions of the initial state and work backwards in a divide and conquer approach to obtain the full 96-bit initial state. One possible way for an attacker to obtain a portion of the keystream is with a known plaintext, ciphertext pair. The attacker can simply XOR the known portions of the plaintext and ciphertext to obtain the respective portion of the keystream.

Let us denote the known byte of keystream produced at time t as K(t). Let us also denote the high eight bits of LFSRA, LFSRB, and LFSRK at time t as High8A(t), High8B(t), and High8K(t). Therefore the initial state of the high eight bits of each register are High8A(0), High8B(0), and High8K(0). At time t = 1, LFSRAwill be shifted once producing High8A(1), LFSRB will be shifted either once or twice producing High8B(1), and LFSRK will be shifted once to producing High8K(1). Then the first byte of keystream is produced by the combining function applied to the high eight bits of each stage, i.e. K(1) = (L[High8A(1)] + L[High8B(1)] + High8K(1)) mod 256, where L[x] is the permutation L, of the S-box, applied to byte x.

In general K(t) = (L[High8A(t)] + L[High8B(t)] + High8K(t)) mod 256.

Therefore if we start the attack by guessing the contents of High8A(1) and High8B(1) we can deduce what the corresponding High8K(1) would be by using the combination function with the known byte of keystream K(1), i.e. High8K(1) = (L[High8A(t)] + L[High8B(t)] - K(1)) mod 256.

 At time t = 2, High8A(2), and High8K(2) will each have one new unknown bit shifted into them, and High8B(2) will have either one or two unknown bits shifted into it. However if we take into account the fact that the number of bits shifted into High8B(2) is dependent on 1 bit from the high byte of LFSRK then the total number of possible states a time t = 2 can be computed as following. If the bit in the high byte tells LFSRB to shift twice, then there will be 4 possible values of High8B(2) and there will be 2 possible values of High8A(2) for a total of 2*4 = 8 possible states. Otherwise, if LFSRB is shifted once, there will be 2 possible values of High8B(2) and 2 possible values of High8A(2) for a total of 2*2 = 4 possible states. Therefore there will be a total of 8+4 = 12 possible states a time t = 2. In general if the current state is known at time t, then there will be 12 possible states at time t+1.

Next we compare all the possible states at time t = 2, and compare their associated keystream bytes with K(2). If there are no matches then we know our guesses for High8A(1) and High8B(1) were wrong and we start over with new guesses. Otherwise we continue in a similar fashion with exploring each branch of possible states that is consistent with the known keystream. After we have repeated this process 24 times we will have obtained the internal states of all three shift registers that is consistent with the known keystream. Each iteration requires one byte of known keystream, and one byte is required for the initial guess of the High8 bits. Therefore, with 25 bytes of known keystream the 96-bit internal key can be found.

4.0) Dynamic Randomized Sequence Cipher

4.1) Introduction:

The key component to breaking the current mobile encryption techniques is obtaining a portion of the keystream. Therefore in creating a technique, my focus was to develop a method that did not use a keystream. The technique I developed is called the DRSC (Dynamic Randomized Sequence Cipher). Instead of XORing a keystream with the plaintext to produce ciphertext, the DRSC scrambles the bits in a random ordering to produce the ciphertext. Also, the ordering is dynamically changed throughout data transfer to avoid discovery of the ordering.

4.2) Description

When Alice wants to make a call using her mobile phone, her phone will establish a connection to a base station. The base station will then compute a random ordering of the numbers 0-255 inclusive to be sent to Alice. The secrecy of the ordering is imperative to the security of technique therefore the ordering must be transferred to Alice securely. How this is done does not effect the DRSC algorithm so it is possible for this step to vary in implementation.

I chose to use a Diffie-Hellman key exchange with elliptical curves in the following way. The base station sends (a, b, n, x, y) to Alice where y^2 = x^3 + ax + b (mod n) represents the elliptic curve to be used, (x, y) is the starting point on the curve, and n is a 1024 bit prime. Alice the chooses a secret number A, computes A*(x,y) and sends it to the base station. The base station also chooses a secret number B, computes B*(x,y) and sends it to Alice. Then both Alice and the base station compute A*B*(x,y) to get (x’, y’). The two 1024 bit numbers x’ and y’ are appended to create the temporary 2048 bit secret key K. Since the numbers from 0-255 can be uniquely represented using 8 bit numbers, then the random ordering of the 256 numbers can be represented with 256 * 8 = 2048 bits. The base station XORs the 2048 bit random ordering with K and sends it to Alice. Alice then decrypts by XORing with K to get the secret random ordering.

Now that Alice has the ordering, she is ready to start receiving data. The base station sends Alice data in frames of 256 bits that are scrambled in the random ordering. The frames have the following format…

[p1 (8-bits), p2 (8-bits), q1 (8-bits), q2 (8-bits), conversation data (224 bits)]

… where p1, p2, q1, and q2 represent random numbers from 0-255 chosen by the base station. Alice uses the ordering to descramble the frame to extract the data. Then Alice swaps the numbers p1 and p2 in the random ordering, and swaps q1 and q2 in the random ordering.

Assuming that the same data transfer rate can be achieved as in GSM, then each frame is sent approximately every 5 ms. Before every frame is sent to Alice from the base station, the base station randomly chooses new numbers p1, p2, q1, and q2. After the base station sends the frame, it updates the ordering in the same manner as Alice so their orderings will be in sync for decryption. Since four numbers are changed in the ordering each frame and there are 256 numbers then a new ordering occurs 256/4 = 64 frames which is approximately every 330 ms.

This process of dynamically changing the ordering each frame and scrambling the frame bits according to the ordering is continued throughout the data transfer, and that is why it is called the Dynamic Randomized Sequence Cipher.

4.3) Concerns:

If a hacker can obtain the ordering at any point the will be able to decrypt intercepted data from the base station. Therefore it is very important to keep the ordering secret. The time the ordering is most vulnerable of being discovered is during the initial transfer of the ordering to Alice from the base station. Since the above method uses a Diffie-Helman key exchange it is susceptible to a man-in-the-middle attack, so care to avoid such attacks should be avoided in implementation. Also the computational steps of the key exchange require math operations on 1024 bit numbers which would require specialized hardware in the mobile phone.

4.4) Conclusion:

Wireless data transfer is becoming increasingly used every day, and the need for increased security of data transfer is becoming increasingly apparent. While the techniques used today are not unbreakable, they do provide a fair amount of security. However as demands for high security arise, better techniques will have to be employed. While the mobile phones today do not have the hardware to support the DRSC, they most likely will in the near future and I believe that the DRSC has a respectably higher level of security.

Bibliography:

Bo, Lavare

http://www.geocities.com/ResearchTriangle/Lab/1578/gsm.htm

Brookson, Charles

http://www.zeata.demon.co.uk/gsmdoc.doc
Shamir, Adi

http://cryptome.org/a51-bsw.htm

Pesonen, Laurie

http://www.tml.hut.fi/Opinnot/Tik-110.501/1999/papers/gsminterception/netsec.html#chap44

Wagner, D.

Cryptanalysis of ORYX

