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1. ABSTRACT

We developed a system composed of a hardware architecture for device control in the home, a server that mediates communication among devices via Microsoft’s Universal Plug’n’Play (UPnP) standard, and a graphical interface that consolidates device functions and presents them to the end user.  We assessed user needs through a study of 15 volunteers and identified a target audience for our product characterized by a high level of comfort with current technologies and an eagerness to adopt new technologies.  We also conducted a study of six volunteers to gauge the usability of our interface.  We report on our system, its successes and shortcomings, alternatives to our system, and the methods and results of our studies.

2. ACKNOWLEDGEMENTS

We thank our mentor Don Perlis for his advice and support; we would not have come this far without him.  We also thank our librarian Jim Miller for locating some very useful articles on speech- and gesture-based interfaces, the researchers at the University of Maryland Human-Computer Interactions Lab for their assistance during the developmental phase of our project, and our thesis committee for reading through the rough draft of this document and attending our presentation.

3. TABLE OF CONTENTS

21. ABSTRACT


32. ACKNOWLEDGEMENTS


43. TABLE OF CONTENTS


64. INTRODUCTION


64.1. Project Overview


84.2. Necessity of a Home Device Network


104.3. Research Questions and Project Scope


125. LITERATURE REVIEW


125.1. Existing Solutions


235.2. Interfaces


235.2.1. Text-Based User Interfaces


245.2.2. Graphical User Interfaces


255.2.3. Speech Interfaces


305.2.4. Gesture Interfaces


485.4.5. Multimodal Interfaces


596. METHODS


596.1. User-Centered Design Methodology


596.1.1. Acceptance


606.1.2. Analysis


616.1.3. Definition


626.1.4. Ideation and Idea Selection


646.1.5. Implementation


646.1.6. Evaluation


667. RESULTS


667.1. User Study 1: Identifying Personas and User Goals


667.1.1. Phenomenological Data


697.1.2. Cluster Analysis Results


727.1.3. Defined Primary and Secondary Personas


737.1.4. Identified Goals


737.1.5. Applying Results to Product Design


757.2. Implementation Details


767.2.1 Hardware Implementation


857.2.2. Device Communication Implementation


947.2.3. Graphical User Interface Implementation


977.3. User Study 2: Evaluating Interface Usability


987.3.1. Task Performance


997.3.2. Usability Ratings


997.3.3. Phenomenological Data


1017.3.4. Interface Evaluation


1038. DISCUSSION


1038.1. Future Directions


1038.1.1. Hardware Development


1048.1.2. Graphical User Interface Development


1058.1.3. Usability Testing


1068.2. Secure Device Networks in the Home Environment


1078.2.1. Security by Design


1098.2.2. Potential for Malicious Attacks on the System


1108.3. System Costs


1138.4. What Makes Our System Different


1169. REFERENCES


13010. APPENDICES


130Appendix A. User Study 1 Interview Moderator’s Guide


133Appendix B. User Study 2 Interview Moderator’s Guide


137Appendix C. Use Cases


137New Lighting


137Morning Coffee


138Home Theater


138Mode / Mood Settings


139Alarm Clock


139Secondary Control


140Consistent Music


140Changing Rooms


141Social Computing


142Appendix D: Historical Analysis


142Changing Role of the Home


143Existing paradigms for the Smart Home




4. INTRODUCTION

4.1. Project Overview

Today, appliances and entertainment devices used at home are multiplying and becoming increasingly complex.  The user interfaces required to control them must organize and prioritize device functions effectively for them to be practical for daily use.  While only a few decades ago, the typical home appliance had just an on/off switch and a small number of additional controls, many devices today are packaged with remote controls crammed with buttons or are equipped with extensive systems of on-screen menu options.  

It has become common to kid about how difficult it is to program a VCR.  There are two reasons for this difficulty.  First, the VCR’s controls are too complicated for most people to learn quickly.  Second, VCRs can be very different from one another and from the rest of the home’s devices and appliances.  Every time someone adds a new device to his or her house, he or she has to learn how to use it.  This is a task that the average consumer either does not have the time or patience for, or simply does not want to do.  Instead, he or she chooses not to use the devices to their full potential. 

Our team started out knowing very little about the home environment, including what questions to ask.  We were guided only by the desire to improve the home environment for the users.  Based solely upon our own apparent intuitions that something was wrong in the home, Universal Device Interface tasked itself with evaluating the home environment and current research in smart home technology in order to delineate problems with the home.  Armed with this new perspective on the home environment, our team developed an automation framework to harness control over devices in the home and grant that power to users, with the aim of alleviating the burdens of the current system while simultaneously furthering user’s ability to coordinate their devices.

The main problem our team identified was that current devices and current research efforts are both device centric.  They both focus on increased functionality and reduced interface to automate the need for user interaction out of the system.  This approach presumes devices can be made smarter than people – that with enough device intelligence people can be factored out of the system.  The egocentricity of the device is twofold; devices feature their own unique interface that forces users to relearn the same tasks anew for every device.  Devices also lack the ability to be coordinated; the only interface most devices offer is a set of buttons and a remote control.  This egocentricity inherently limits a user’s ability to orchestrate and manipulate their devices; the device presumes it knows every way it would want to be used. 

Our proposed solution is the application of user-centered design to devices and device interfaces.  To overcome the fallacy of ego within a device, devices within the home environment need to begin making themselves as accessible as possible to the user.  Our team’s solution was the creation a central device server for the home and the production of devices that can communicate their capabilities to a server and receive commands from it.  Devices are self describing, and capable of interacting and being controlled from anywhere in the network.  Through this system, one is able to access all devices through the same standardized interface, affording the same ease of use for all devices, and never forcing one to relearn a new system of device control upon the addition of new devices to the system.  Additionally, due to the nature of centralized communication employed in this system, the system can be used to increase the productivity of devices in the home or office by allowing them to communicate with one another or to be controlled simultaneously.  Of course, this system of device control is only as good as the interfaces used to operate it.  A significant portion of our solution, and the majority of our novel research, was directed at the design of an easy-to-use interface which will require the same amount of time or less to learn as an interface for any one of today’s devices.  We discuss a number of different modalities of interface, including text-based, graphical, speech, and gesture, as well as interfaces that combine the strengths of multiple modalities.

4.2. Necessity of a Home Device Network 

The real issue at stake in this project is control of our devices.  Devices must work in unison to deliver a consistent user experience. To address the issue of home automation, we must pinpoint what it is about the current situation we find inadequate.  By explicitly labeling the ways in which our current levels of control are unfit, we accomplish two tasks: discovering what it is we are trying to solve, and justifying that there is a problem to solve in the first place.  We have pinpointed three major factors that contribute to the inadequacy of control in the home: diversity of control, the isolated nature of the device, and the increased number of devices in the home.  

Diversity of control is the leading factor afflicting control in the home; every consumer appliance has its own interface with no relation to any other device’s interface.  Every time a user wants to set a clock, he or she has to remember the procedure for how to set a clock on that particular device.  Every task has to be learned, and is often consequently forgotten, uniquely for every device.  This problem stems from the origins of the appliance.  Interfaces were originally a functional challenge and not a design challenge.  The task was to give the user some way to do everything he or she needed to do with what was available.  The challenge became making a way to set the clock on a VCR without a number pad and without an excessive and costly electronics package inside.  When microwave ovens came along with digital timers, the time-setting interface was built all over again.  The stove clock with its two knobs had another time-setting interface, and the car stereo a third.  Today, the user has dozens of appliances that require the same task to be completed in entirely different fashions.  It has become unreasonable to expect the user to correctly perform each and every task.

The next problem with the current device systems is that each device operates under the assumption that it will be used in isolation from other devices.  More and more we are beginning to see that this is impractical.  Today, cell phones have complex software to link phone listings to one’s computer, a computer links to a PDA, the PDA to a friend’s PDA.  We seek to bring this level of interconnectivity to devices through a common protocol.  This will allow coordinating activity, for example, your coffee maker will know when your alarm rings, so that if you choose, you can set it to start making the coffee automatically.

The third problem is the complexity of control needed.  Today, not only does every household have a complete media hookup, but also each person in the home has their own.  However, control has evolved little since the original Lazy Bones remote control in 1950.  Users are inundated with separate remotes for each system, complex routines for switching modes, and involved device menus.  We seek to unite all of these controls into a single expandable system that functions on a preset protocol for every device.

4.3. Research Questions and Project Scope


Our goal was to discover and address the inadequacies in current approach to the problem of home devices and appliances.  The topic began as exploratory research; “what characterizes user’s problems within the current systems?”    To generate a comprehensive characterization, our team began with an initial review of what comprised the home environment.  Our team interviewed potential users of the system to match out initial overview to real life users and to begin to develop an understanding of what was lacking.  Our team developed use cases to identify breakdown points of the current system and examined current smart home systems to compare what problems they were solving.  In answer to the question, our team developed two personas with their own major goal sets.

From this understanding, our team hoped to develop solutions within the context of user-centered design.  This marked the beginning of the second phase of research, development of a user centered automation framework.

Finally, to answer the question “have we solved the identified problems?” we conducted a usability study in which sample users completed several common device-network tasks.  We evaluated the time it took to complete each task, the correctness of the user’s solution, and the user’s subjective satisfaction with the system.

5. LITERATURE REVIEW

5.1. Existing Solutions

A number of projects have been initiated to achieve similar goals to those laid out by Universal Device Interface.  These projects include the design of standards for communication between devices as well as the design of networks to mediate this communication, many of which are now or will soon be incorporated into commercially available products.  Other projects have been carried out also to build full-scale “smart homes” as research facilities.

These projects all move towards the goal of creating “smart environments,” defined by Cook and Das as environments that are “able to acquire and apply knowledge about an environment and also … able to adapt to [their] inhabitants in order to improve their experience in that environment” (Cook and Das, 2005, p. 3).  Smart environments should feature remote control of devices, communication between devices, sensors and actuators within the environment, and decision-making capabilities (Cook and Das, 2005, pp. 3-8).  Since the numerous smart environment projects share common goals, they also face similar obstacles.  Some of the most notable are consumers’ satisfaction with traditional means of controlling their devices and their unwillingness to learn new interfaces (Mozer, 2005, p. 274).  These complications require that smart environments abandon the interfaces commonly used in computing in favor of more natural means of interaction, including multiple modes of input and output, and the acceptance of implied commands (Abowd and Mynatt, 2005, p. 154-157).  To achieve this, many smart environments are context aware and/or predictive.  Systems that are context aware may track any implicit signs of the state of an environment, and can use this information to alter the way they function.  This could be as simple as tracking the location of an object or person, or as complex as a system employing multiple cameras, microphones, and other sensors to determine what is occurring in the environment (Abowd and Mynatt, 2005, p. 160).  Predictive systems, on the other hand, study behavior of the occupants of the environment to learn patterns.  These patterns may then be used to automate the repeated use of certain devices, to conserve resources when devices are not expected to be needed, or to detect anomalies within the environment such as security or health concerns (Cook, 2005, pp. 176-177).  These two systems are, of course, not mutually exclusive and would complement each other well in practice.


The other major step towards achieving the goal of a smart environment occurs at the level of the device.  Devices should be easily controlled in ways that are simple and familiar to the user.  Additionally, the user benefits greatly from communication between the devices, especially for the purposes of automation and sharing of information between devices.  A number of devices have already appeared that achieve these goals, and are known as “network devices” or “network appliances.”  They may be defined as a “dedicated function consumer device containing a networked processor” (Marples and Moyer, 2005, p. 129).  The emergence of such devices has resulted from dropping costs of electronics, an increase in consumer demand for such capabilities, an increase in online data availability, and improved network technology.  Network devices have shown up in the automotive environment, in the form of navigational aides such as OnStar, and in personal area networks (PAN) linking cell phones, PDAs, and other handheld devices.  Network devices in the home environment, while highly anticipated, have been nearly absent from general use, with the exception of X-10, which will be discussed later.  However, the home environment offers a potentially wide array of resources for network devices, such as the ability to scan the network (for example, room by room) and the availability of multiple modes of communication, including wireless, Ethernet, and power line (Marples and Moyer, 2005, pp. 129-134).

The devices found within smart environments may be connected by a variety of means.  Among these are those traditionally employed in computing, including Ethernet and wireless means.  Currently, there exist a number of standards for wireless communication that are all still vying for prominence.  The standards that are most popular and show the most promise for network device applications are ZigBee, Bluetooth, IEEE 802.11/WiFi, and IrDA.

The ZigBee standard was proposed and developed by an alliance of companies called the ZigBee Alliance.  The goal of ZigBee is to achieve wireless communication of monitoring and control devices using the IEEE 802.15.4 standard.  Further, ZigBee seeks to utilize a variety of topologies for this network, including mesh, peer-to-peer, and cluster tree, with special attention paid to security.  One major advantage of the ZigBee standard is that is highly power-efficient and cost-efficient (Zigbee Alliance, 2005).

Bluetooth is also a wireless standard showing significant promise for applications in smart environments, although it is designed primarily for communication between mobile devices, with the goal of unifying the functions of various products from diverse manufacturers (Marples and Moyer, 2005, p. 134).  As such, most Bluetooth products, such as PDAs, cell phones, and computer peripherals, have found their way into PAN applications (Bluetooth, 2004).  However, this specialization of applications by no means excludes Bluetooth from a wider base of applications such as the home or office environment, especially if Bluetooth becomes commercially popular.

Another wireless standard reaching widespread use is IEEE 802.11, primarily in the form of WiFi.  Used mainly for wireless local area network (WLAN) purposes, this standard has become very popular for coordinating wireless networks in home and office environments.  The WiFi Alliance has grown to include over 200 member companies, which have produced over 1500 consumer products (WiFi Alliance, 2004).  Given its existing use in establishing WLANs in homes and offices, and its growing consumer popularity, WiFi should prove to be a very useful standard for communication between devices and appliances in these environments.

One final wireless protocol with applications in smart environments is IrDA.  IrDA is a highly affordable option for wireless communication.  Unlike the aforementioned standards, IrDA does not make use of radio frequency (RF) waves for communication.  Instead, it is based on the infrared (IR) portion of the electromagnetic spectrum.  This difference limits IrDA to line-of-sight applications only.  Therefore it is generally only used for short-distance, point-to-point data transfer applications (Infrared Data Association, n.d.). While IrDA may have applications within smart environments due to its low cost, directional selectivity, and simplicity, it is unlikely that IrDA will become the main standard for wireless communication within smart environments because of its line-of-sight limitations.


Ethernet is a longstanding, wired medium for network communications in computing.  The system is robust and fast, and it uses existing standards of communication with devices, such as internet protocol (IP).  While the presence of a physical wire connection limits the ease of expandability of the system and the locations of its components, this feature also leads to levels of security that are very difficult to achieve in any wireless system (Lewis, 2005, p. 25).  One system which could take advantage of the Ethernet or WiFi standard is Internet0, which utilizes IP for the communication of devices.  This system provides for the same type of universality and expandability that is seen on the Internet, and allows for easy communication of devices within the home or office with the Internet. (Internet0, n.d.)  Another system designed for the use of IP over any type of LAN is BACnet, a protocol for the automation of heating, air-conditioning, and refrigeration (BACnet, n.d.).

A major disadvantage of wired Ethernet systems is the requirement that new wires be added to the home or office.  There does exist a wired standard, however, that requires the installation of no new wiring or equipment beyond the devices themselves.  This is the technology known as power line communication (PLC).  PLC utilizes the power lines already present within an environment to transmit data through power outlets.  While PLC offers the advantages of low cost and wide availability, it is also a relatively low-speed system.  This limitation in speed is a result of requiring the use of low frequency data transfer rates over the power line medium and the large amounts of noise resulting from the simultaneous use of the lines for power transmission.  Another obstacle presented by PLC is that multiple networks could share common portions of the power grid, slowing communications down further by limiting bandwidth and requiring the use of security measures (Latchman and Mundi, 2005, pp. 47-48, 60-61).

Homeplug is one standard that operates via PLC and is capable of achieving near-Ethernet quality performance.  This is achieved by splitting the available bandwidth into many channels, each with a different frequency, and optimizing the speed of each channel.  Data can be sent simultaneously over the various channels, thus greatly increasing the overall rate of data transfer through the network (Latchman and Mundi, 2005, pp. 55-56).  Homeplug is available for home use in computers, devices, and appliances, and is capable of connecting devices not only to one another, but also to the internet (Homeplug, 2005).


A very successful system utilizing PLC known as X-10 is already widely available to the homeowner.  X-10 is one of the most long-standing PLC protocols, and the company sells a wide array of products that may be controlled via PLC from a single remote control.  X-10 also provides the ability to automate features of the devices, program routines, and provide security for the home (X-10, 2005).  The uses of X-10 are limited to simple control of lights and power controls of other devices, due to the use of only a single frequency band at a very low transmission rate. Noise is also poorly controlled for (Latchman and Mundi, 2005, pp. 54-55).  However, despite these limitations, X-10 is the first and currently only commercially successful home device networking system.

There also currently exist some standards for device networking that utilize multiple means of communication, such as CEBus and LonWorks.  CEBus is primarily a PLC technology, but also makes use of coaxial cable, telephone lines, IR, and RF.  This system utilizes the Home Plug and Play Standard (HPnP) to create a network that is context aware.  To achieve this, the devices produced by CEBus may communicate directly with each other.  Additionally, CEBus devices may be networked to a central server to expand the overall network to include other devices using the HPnP standard.  Using this system, devices also make reports to the central system about the status of variables within the home environment, furthering the context awareness of the system (CEBus, 2001).  

LonWorks is another system in which networking may occur through a variety of media using a standardized language called LonTalk.  LonWorks operates without the necessity of connecting its devices to a centralized server, and these devices need not be aware of the exact names or locations of other devices on the network.  This is achieved through a peer-to-peer (P2P) network scheme, connecting all computers to one another with a bus topology to share data and resources.  Additionally, this scheme greatly reduces errors by connecting the communicating devices directly to one another, thus removing a potential point of failure that would occur at a central controller (Latchman and Mundi, 2005, pp. 54-55; LonWorks, 2004).


A large number of universities and a handful of private companies have initiated large-scale projects to incorporate all of the research into device networking, context aware computing, predictive computing, and related fields into true smart rooms, smart offices, and even smart homes.  These projects have served both as invaluable research tools as well as dramatic demonstrations of the progress already made in the field of smart environments.  Various smart environment projects have been initiated for a variety of reasons, including awareness of and adaptation to the inhabitants, accessibility, and technological advancement of communications capabilities.

An aptly named member of the first group listed above is the Aware Home at the Georgia Institute of Technology.  The main goal of this project is to enhance the quality of life in the home and to enable people to maintain independence in their homes as they age.  Awareness in this home is achieved in a number of ways.  Location of inhabitants is tracked both by RFID devices kept on the inhabitants and by cameras using various computer-vision schemes.  Additionally, the project aims to develop ways of monitoring the activities of the inhabitants to enhance the home’s knowledge of context beyond simple location.  The home provides ways to improve the communication of its inhabitants with their family members by providing simple, non-intrusive means of keeping tabs on one another.  Additionally, the home provides memory aids to assist the occupant in resuming interrupted tasks and finding lost objects.  The home also implements a novel type of interface for controlling devices, known as the Gesture Pendant.  This device allows the use of simple hand gestures, in combination with the context in which the gesture occurs, to control devices (AHRI, 2004).

Another adaptive home environment may be found at the University of Colorado’s Adaptive House.  One of this system’s premises is to present no unconventional controls to its occupants and require no specialized programming of the system.  The home observes the normal routines of its inhabitants in search of patterns.  After a period of observation, it predicts future behaviors and alters the activities of devices within the home accordingly.  This system focuses mostly on the “comfort systems” of the home, doing tasks such as turning down the heat when no one is there and turning it back up shortly before someone is expected to return. Learning and prediction in this home occurs through neural networks.  These are processing schemes based on the workings of the human brain in which a large number of individual processing units take on individual simple tasks and communicate to collectively achieve complex tasks.  The most important feature of neural networks is that they may learn from prior experiences, thus allowing them to detect patterns within the home and determine whether the detection of a pattern has lead to correct or incorrect predictions (Mozer, 2005, p. 276; Adaptive House, n.d).


Another home which uses observation and prediction to automate systems such as lighting and heating is the MavHome at the University of Texas at Arlington.  The primary goal of this home is to ensure comfort while minimizing costs.  In addition to performing the same type of automation as described above for the Adaptive House, MavHome focuses on the materials and functions incorporated into the whole home, not just its electric components, in order to minimize energy costs.  Features controlled by the home include lighting, temperature, health monitoring systems, refrigerator inventory, and the recording of programs by the home entertainment system (Cook, 2005, pp. 181-183; MavHome, 2004).

There also exists an adaptive home at the University of Florida whose primary goal involves the improvement of accessibility and care for elderly and invalid individuals.  This project is the Gator Tech Smart House and Matilda House, both of which make use of a robot known as “Matilda” to mimic the movements of an elderly person living in the home for experimental purposes.  These homes are context aware in that they are able to track the location of their inhabitants.  Additionally, these homes offer such features as remote monitoring, a patient care assistant which provides reminders for the elderly to complete certain tasks or take medication at appropriate times, patient health monitoring, and a simplified microwave cooking system involving the input of instructions to the microwave via an RFID tag in the packaging of the food (Helal, Lee, and Mann, 2005, pp.  367-376; Reh. Eng. Res. Cen., 2004).

One project with a slightly different focus from the aforementioned is the House_n at MIT, whose primary goal is to bring the technology of the home environment on par with the technological advancements occurring in the fields of computing and electronics.  Secondarily, the home aims to evolve to meet the changing needs of its inhabitants and to keep up with future technological advancements.  The home was completed fairly recently and is being used to study volunteers who live there over extended periods of time to determine the success of various features built into the home (MIT, n.d.).

The Internet Home has been developed by the private company Cisco.  The concept of this project is that all of the devices communicate via IP and are connected to both each other and to the internet.  The devices may be controlled by a variety of integrated interfaces in the home, or by a web-based interface that can be accessed anywhere.  The Internet Home is a full-scale home built outside of London, used to demonstrate a wide array of products and technologies expressing Cisco’s concept that the impact of the Internet will soon extend to fill every part of our lives.  The system used to run this house is now commercially available from Cisco (Cisco, 1999).


George Washington University and America Online have collaborated to produce the Home of the 21st Century, whose goal is to improve the entertainment and communication capabilities of a home.  The house uses various sensors to determine who is present, and behaves accordingly.  The house may be personalized for any inhabitant’s preferences of entertainment, health, security, and comfort, using X-10 devices to achieve automation.  The features of the house may all also be controlled remotely (Home of the 21st Century, n.d.).

Clearly, the large number of standards developed for communication within smart environments, the number of concepts for incorporating these devices into a single network, and the number of research projects aimed at compiling all of these concepts into a single smart home all imply that the development of smart environments is a quickly growing field.  However, this field is far from achieving any single consensus concerning communication standards, network topologies, or even the reasons behind creating a smart home or office.  We will likely see some success in the implementation of smart environments in the near future. However, it is unlikely that such implementation will become widespread until a smaller number of standards has become accepted and used by a large number of manufacturers.  Even more importantly, researchers must find ways to lower the costs of such systems and increase their ease of use before they could ever compete with traditional appliances for their rightful places in the home or office.  Although this is much to accomplish, the research projects described above have all contributed to a significant push in achieving these goals.

5.2. Interfaces

5.2.1. Text-Based User Interfaces

Text-based interfaces, also sometimes referred to as command line dialogues, are the oldest and most traditional method of operating a computer. It is an interface in which a user navigates through a system, or a series of pages, using text commands (Smart Computing Dictionary). A common example of a text-based interface in which users type commands is DOS. For example, to delete a directory named “Gemstone” in DOS, at the C> prompt one would type “rd Gemstone” and press the ENTER key. The rd command is short for “remove directory.” A graphical user interface, by contrast, enables a user to use a mouse to click and drag graphical images. Different artificial programming languages may be used to issue directions and execute commands, and much attention has been given to developing more intuitive languages that are easy to learn and use. A primary problem with a text-based interface involves lexical and syntactic issues.

An important issue is how to name different terms in a command set. For examples, some studies have revealed that specific names are better than generalized ones or abbreviations, and that a user-generated name is often more natural and easier to remember than pre-assigned names. One well-known study in the field of syntactic command interface issues demonstrated that syntax that includes familiar, everyday words and pointed phrases helps make a command language easier to understand and learn than an interface with a more notational syntax composed of symbols (Ledgard, Whiteside, Singer, and Seymour, 1980).

The benefit of text-based interfaces is that before the advent of high-speed Internet and faster computers, simple character-based commands proved faster and more reliable for most users. Few early PCs came with a mouse or a color monitor; while most all of today's PCs contain a mouse and a color monitor, as users have shown preferences for graphical user interfaces like Windows or Macintosh over character-based interfaces. Some text interfaces, such as webpages that predominantly use text links to move to different pages or the Telnet mail program, are still marginally used.

5.2.2. Graphical User Interfaces


In a study comparing certain variables such as error rate, response time, and user satisfaction between graphical user interfaces and text-based interfaces, researchers at the University of Utah showed that nurses had faster response times and fewer errors when they used a graphical user interface prototype. The GUI was also more satisfactory, and subjects learned the system faster (Staggers and Kobus, 2000). 

A GUI enables software to incorporate graphics, effective molecular visualization tools, and is generally easier to learn and use. Graphical interfaces involve windows, menus, and other features. Menus are effective because they allow for user recognition, instead of requiring a user to recall a command or option. Menus are very helpful especially within the confines of a GUI because users may choose an option by clicking with a pointing device (Shneiderman, 1998).

5.2.3. Speech Interfaces

Human computer interaction has been defined as, “the set of processes, dialogues, and actions through which a human user employs and interacts with a computer. The computer is a tool, a complex man-made artifact that can stretch our limits and can extend our reach. The purpose of the discipline of human-computer interaction is to apply, systematically, knowledge about human purposes, human capabilities and limitations, and machine capabilities and limitations so as to extend our reach, so as to enable us to do things we could not do before. Another goal is simply to enhance the quality of interaction between human and machine.” Auditory channels, while a common way to communicate between humans, has never become commonly or regularly used between humans and computers. Auditory input is useful in many situations, though. Speech interfaces include both speech synthesis and recognition components.

Understandable speech synthesis by a computer is readily available on modern personal computers and other pieces of technology, although the quality of the speech often varies with price. More expensive, high-end systems are able to simulate a wide variety of subtle speech qualities such as gender, inflections, and diacritics. Speech output is useful when a message is simple, short, requires an immediate response, or if visual channels are already overloaded. It is also useful if a computing environment is poorly lit, if the user must be free to move around, and in other similar situations (Badre, A and Shneiderman, 1982).

Speech output systems generally fall into three categories: phoneme-to-speech systems, text-to-speech systems, and stored message. Phoneme-to-speech systems generate speech from a phonemic description of a desired output. A phoneme is the smallest, compartmentalized phonetic unit in language that still conveys a distinction in meaning, such as the “c” in cat in the English language. Computer systems can be programmed to generate speech from basic building blocks, but this often depends on what the system is designed to respond to or communicate. For example, if a list of names or a listing of program options are to be communicated that includes words or parts of speech whose meanings are not programmed into the computer, a phoneme-to-speech system would be optimal.

Text-to-speech systems convert ASCII text into spoken form. Text-to-speech technology is useful when a computerized application is needed to communicate with a user or customer, and is particularly useful in telephone services. While recorded materials still provide the highest quality speech, recordings are often impractical when there are cost or time constraints, or when desired output may not be anticipated (AT&T Website). Some typical uses for this type of speech interface technology include customer support dialog systems such as help desks, interactive voice response systems like interactive class enrollment programs, email reading, and screen reader programs for blind people.

AT&T’s research labs have an interactive multilingual demo available online at www.research.att.com/projects/tts/demo.html. Their research group is interested in raising the naturalness of speech synthesis while maintaining acceptable intelligibility. Their software does not actually understand the text it reads; it can not translate English words into German. The software reads inputted text according to programmed pronunciation rules. Their research is on natural-sounding synthetic speech, not language translation. It will also make occasional mistakes with verb tense or other parts of speech. For example, “read” is pronounced differently according to its context (“I have read this thesis,” or “I will read this thesis.”). This is a challenge for all text-to-speech technologies, but they are being ameliorated all the time.

Systems that use stored messages simply record a prerecorded spoken message when presented with a command to do so. When the number of possible messages that may be needed is too great, however, prerecorded words may be stored individually and messages can be composed of combinations of these words. Many North American telephone companies; directory information systems use this approach. A weakness is that it is difficult to achieve smooth speech using this procedure.

Speech recognition is the processing and identification of spoken words by a computer. Making a user speak is advisably only under certain circumstances, such as when the visual system is already overloaded, because speaking is more demanding on a user’s working memory than mouse pointing with a graphical user interface model (Schneiderman, 1998). The primary steps involved in speech recognition are audio input, filtering, and recognition.

Audio input is the process of transferring sounds from the real world onto the computer in digital form.  A microphone picks up the sound and transfers it to the computer. Software then converts the audio stream into one of several audio storage formats.  WAV format is one of the most commonly used to store raw audio information.  Speech recognition programs may convert the audio into a different storage format for more convenient access.

Filtering is the process of extracting from the audio stream only those sounds which are relevant to the speech recognition software.  Typically, this means eliminating background noise, but can also be used to clear out specific unwanted elements from speech, such as a cough or a throat being cleared.  To eliminate background noise, speech recognition programs listen to several seconds of audio and subtract the sounds that occur continuously, such as the hum a fan in the background.  After filtering is complete, the audio stream contains only those sounds which are believed to be significant.

Recognition is the final and most significant stage of the process.  It actually contains a series of related steps that convert the filtered audio stream into sentences.  The audio stream is compared against an audio library in an attempt to recognize phonemes (individual sounds).  Once this is complete, the phonemes are compared against a language dictionary consisting of all the words that the program can recognize.  The phonemes do not have to match exactly in order for a word to be recognized.  This allows for words to be recognized from imperfect speech, but also introduces the possibility of error.

There are two major steps outside of the basic speech recognition process that are essential to make speech recognition work.  These steps are creating a language model, and training the speech recognition software. The most basic language model consists of a dictionary of all identifiable words with their corresponding phonemes.  For instance, the word "arrow" might be expressed as "A-R-O", with each of A, R, and O being phonemes for the sounds found in the word arrow.  This allows the computer to translate from the sounds it can recognize to words.  More complex language models may also contain expected speech patterns, allowing the computer to identify more complex sentences.

Training the speech recognition software is the process of configuring it to recognize a particular person's speech.  There are many accents and variations of dialect within any given language.  Additionally, each individual person will have minor variations in pronunciation, tone, and pitch of voice.  These variations make it so that the word "arrow" spoken by one individual sounds completely different from the same word spoken by someone else.  Training enables the software to adjust for these variations.  The user speaks a word, then manually identifies which word it was they were trying to say.  The speech recognition engine stores this information and begins to adjust accordingly for the variations in that person's speech.

One of the open source software options for speech recognition is CMU Sphinx, created by a group at Carnegie Mellon University.  The Sphinx group has created four versions of their speech recognition engine.  Although the first Sphinx software is out of date, Sphinx 2 and Sphinx 3 are both fully functional and optimized for different types of speech recognition.  Sphinx 4 was completed too late to be considered for our project, although it is worth mentioning.

Sphinx 2 is capable of decoding both continuous speech and prerecorded sound files.  The system is designed to be independent of the speaker, meaning that it does not require user specific training.  The software comes with function libraries for recording, parsing, and decoding speech.

Sphinx 3 is capable only of decoding continuous speech.  It was designed with live broadcast transcription in mind.  The system is more accurate than sphinx 2, especially when a large vocabulary is involved.  Sphinx 3 also takes several times the processing power of Sphinx 2.  The function libraries of Sphinx 3 are functionally equivalent to those of Sphinx 2, with the exception of decoding prerecorded speech.

Sphinx 4 is the first java-based version of the speech recognition software.  This new implementation was designed to make the software more flexible and more portable.  Java is by nature both platform independent and quite capable of generalization.  An extensive collection of APIs of classes and interfaces allow for interchangeable components.  Sphinx 4 takes advantage of this by allowing for pluggable front ends, language models, acoustic models, and searching mechanisms.  Like Sphinx 2, this version is capable of decoding both continuous speech and prerecorded sound files.
5.2.4. Gesture Interfaces

The challenges for gesture interfaces are distinctly different from either speech or touch-based interfaces. The greatest challenge in a voice or LCD interface would be for the central computer to relay commands out to devices. Gesture interfaces, however, require special programs to capture and interpret the intent of a gesture before device control is even considered. Another obstacle is cost. Many proposed systems use extremely expensive cameras including infrared technology or complex wearable computing hardware, and so are not practical for our project.

There is a wide body of research available on gesture-based interfaces. There are two primary methods of input, camera systems and wearable devices. Research on camera-based interfaces in recent years has focused not only on gesture interpretation, but also on simple tracking of objects such as a user’s head and fingers. There is also interesting research on infrared cameras. While wearable computers including vests, gloves, boots, or jewelry provide an interesting alternative, and may provide the most accurate and easy to interpret data, they are a slightly cumbersome interface.

Several challenges come with designing a gesture based interface. Data interpretation is probably the most complex of these challenges. There are several published methods for programming a computer to recognize hand or body movements. Camera data would be much more challenging to interpret than a glove’s information. Once the raw data is recorded, one must then isolate the desired information by removing background. With the usable information identified, the system can interpret this data and compare it to a pre-loaded library of movements to determine the intended gesture. With the intended gesture identified, all that is left is for the computer to send out the desired command over the network to the desired device.

There is also an entire body of research that, while interesting and even applicable, does not fit into these predetermined categories, or is not within the realm of possibility for our project. We realize that any interface just receives input, filters it, interprets what’s left and acts. Computers are simple in that they need no filter for background, and function through a predetermined set of commands (keys, mouse strokes, etc.) that can easily be defined and recognized.  In the end we hope to produce an interface that allows users to move beyond a mouse and keyboard to gesture, speech and other interfaces and even define their own inputs through neural networks that would learn them.  These networks will ideally even be able to combine interfaces to get better more accurate information and pick up things that they individually would have missed.


Considering the obvious barriers of expense, bulk, and technical complexity in any gesture-based system, we may have to be content with a versatile network that can easily be improved with better data. All these factors logically lead to a system of inexpensive cameras and a neural network that can use them. Even if our cameras do not perform as well as we hope, our goal is still to design the network so that better cameras or any other interface can easily be integrated into it and function seamlessly.

There are many methods to track and interpret gestures as meaningful commands to control devices in an interface. Aside from cameras, another such method involves the use of wearable computers. Wearable computers are devices that can be worn on a human body that has the potential to perform all the normal functions of a PC. Their main purpose is to deal with real-time data and interpret it accordingly, providing portable access to information a user requests without delay or interruptions. Wearable interfaces include devices built in to such articles of clothing as windbreakers, boots, and gloves. They have been developed and researched in the past several years because they can be used to recognize emotions, track movement, create an interactive virtual environment, and much more.

One form of wearable computing involves the installation of multiple sensors into a lightweight windbreaker (Wexelblat, 1995). This device allows a user to interact seamlessly in a virtual environment. The computer recognizes and captures continual natural gestures formed by the user. In this way, the user can perform tasks in a virtual world without being hindered by predefined gestures and forms. Because work done in this project involves a virtual environment, it cannot be directly applied to research that pertains to humans interacting with the real world. However, it suggests a method by which users can define their own gestures in case neural networks, which are discussed later, are not feasible. The ability for a user to define gestures is critical when interacting with reality.

Another form of wearable computers that applies to detection in a virtual environment is the Cyberboot (Choi and Ricci, 1997). This is a foot-mounted gesture detection system that enables a computer to interpret the direction, velocity, and upright position of a user. The information that is obtained by this wearable device can be used and applied to movement training such as sports training or physical therapy, where a user’s movement can be tracked and modified (Choi and Ricci). Information can also be interpreted as gestures and therefore as commands to operate devices on a network.

Wearable devices designed to recognize expressions of emotions are called affective wearables. They are able to sense physiological signals and interpret them as sadness, happiness, fatigue, etc. (Picard and Healy, 1997). This is accomplished by the concerted efforts of multiple sensors that are attached to different parts of the human body to monitor such things as respiration, heart rate, temperature, and blood volume pressure. This can be applied to something as simple as a walkman that is being used by a runner. If the computer senses that the runner is becoming fatigued, the walkman might play an upbeat song (Picard and Healy).

There are also many glove-based wearable devices that replace mice, keyboards, or both. One such system that replaces both the keyboard and the mouse is the Lightglove (Howard and Howard, 2001). This device is worn under a user’s wrists and emits a beam of light. Information is gathered from the interruption in the light due to the user’s typing motion. It does not follow the gestures of the hand in a conventional way, but rather through monitoring disruptions in the light created by a user’s keystrokes. Another glove-based model is the Cyberglove, which allows a user to move files or folders from one computer to another computer, printer, scanner, or other applicable device (Omata, Go and Imamiya, 2000). This movement is accomplished by using a grasping motion to pick up the file or folder from one location, and then using a dropping motion to release the file or folder at another location. The computer recognizes these gestures because they were predefined into it using the glove.

This area of research, known as wearable computing, is interesting because it is directly associated with creating a seamless interaction between humans and computers. Many of these wearable devices are able to identify and track gestures made by various parts of the human body. Unfortunately, wearable computers are often cumbersome to wear and involve highly technical hardware, and so are not feasible for daily use. They do offer insights, however, into how to create a seamless gesture interface to spot and track gestures without the use of a device that has to be worn.


A major method for detecting gestures in a gesture-based interface lies in the use of video cameras. This does not require a user to wear any form of motion-sensing or signal-emitting device, meaning that the interface poses less of an intrusion and can facilitate seamless interactions between users and their devices. Furthermore, the use of cameras allows for a more versatile interface that can detect any of a variety of gestures or positions. This allows for integration of devices in a way that will not overwhelm users, as would a complicated desktop or touch screen interface. Identifying and interpreting gestures using cameras has the potential to provide an interface that is both easy to use and always available to a user, as the user does not have to be in direct physical contact with any component. There is a lot of research regarding how cameras might go about tracking heads and hands.

One of the major areas of research in the field of gesture recognition is in tracking heads. This allows the computer to detect the location of an object with respect to a reference point, the head, and control cameras to follow it around a room. This would be cost-effective by reducing the number of cameras necessary to run an interface. In addition, gestures that are more complex than simple head orientation, such as hand motions, can be performed in a specific location relative to the head. Thus, tracking the head could be used to define a location for other gestures to be interpreted.

One method for determining head location is to use the intensity gradient of the image recorded by the camera. Here, the intensity of the image around the perimeter of the head is used in addition to the color of the inner portion to generate an ellipse that the computer interprets as the subject’s head. This system works effectively with users of varying head shapes and skin tones and in numerous environments, allowing for movement of the user all over a room, regardless of lighting conditions (Birchfield, 1998). The major drawback of this is that because it only generates a two-dimensional ellipse, it tells nothing about the orientation of the head or which direction a user is facing, which drastically limits the number of possible gestures.

Another approach to head tracking involves tracking the orientation of the head and the face rather than its location. Multiple cameras are used to generate stereo images, which can be used to create a three-dimensional model of the head. An algorithm is applied to these images to assign a set of vertices and polygons to the face, which are then identifiable with the features of the face (Yang, R., 2002). Cues may then be taken from changes in orientation to control the interface.

Yet another method for tracking faces utilizes information on the distribution of skin color on the face, allowing for recognition of simple facial expressions. This method uses color cameras and a set of algorithms to decide which portion of the image is the face, and creates a three-dimensional model of the face from stereo two-dimensional images (Gokturk, Bouguet, Tomasi, and Girod, 2002). It then tracks deformations in this model to determine if users are opening or closing their mouth, smiling, or raising an eyebrow (Gokturk, Bouguet, Tomasi, and Girod). The system is flexible enough such that it can handle motion through a room and in varying lighting conditions. An interesting feature of this system is that because it focuses on colors and not shapes, similar algorithms can be extended for use in recognizing other types of gestures such as those with hands (Yang and Waibel, 1996).

Head tracking is, of course, not the only application for cameras in a gesture-based interface. The images taken may also be used to analyze hand gestures. Hand gestures can be much more descriptive than head locations, orientations, or facial expressions. The use of a system to identify hand gestures is potentially more useful than a head tracking interface because it can be used to control devices such as lights, home electronic systems, toasters, or any other connected device. 

One method for hand-gesture tracking involves the detection of a finger through the use of multiple visual cameras set in a room that provide several different viewing angles. Depth, color, and edge detection are taken into account to determine with reasonable accuracy the location of a finger being tracked (Jennings, 1999). One important limitation of this method is that, because it is designed for pointing at objects on a computer screen, it currently only works within an area roughly the size of a computer monitor. Furthermore, this method of finger tracking can function under different lighting conditions even when cameras are being moved while they are tracking (Jennings). Therefore, such a system would be highly applicable to the conditions of a whole room, assuming that the viewing area is expandable.

Another device for hand-gesture tracking involves the detection of a finger with the Gesture Pendant, a small infrared camera that can be worn as a piece of jewelry on a necklace or pin (Starner, Auxier, Ashbrook, and Gandy, 2000). It can detect gestures in the dark because it incorporates the use of infrared technology. Another application using infrared camera technology has been developed to track each individual finger of the hand, allowing the system to differentiate between gestures performed with varying numbers of fingers. An algorithm is used to determine the trajectories of each finger along the surface of the desk, which is then verified in the next frame by an overhead camera. The computer can then track shapes made by the fingers and determine how many fingers were used in drawing each shape (Oka, Sato, and Koike, 2002). This system has potential as the basis of a gesture interface, except that it is limited to the surface of a desk. However, if a system as sensitive and versatile as this could be expanded to work in a three-dimensional room, it could be a very powerful tool.

Before a gesture received from a hardware input device like a camera can be interpreted, it must be properly captured. A capture is the process of removing the background while retaining all relevant information regarding the position, shape, and location of the hand. While this is not a problem with a wearable device like a glove, it presents a dilemma when working with such remote sensors as cameras. A glove provides a clear three-dimensional model of the hand, while a camera captures an entire field of view, complete with a background and other irrelevant information. It is necessary to address image conversion because remote sensing is often unavoidable in practical gesture interfaces. Separating background noise like flashy wallpaper or unrelated motions of background objects from meaningful information can be a daunting task for an interface. Nonetheless, a proper three-dimensional capture of the gesture must be made before it can be recognized and interpreted. Leading methods of image retrieval include use of reference panels, Regions-of-Interest (ROI), gray level slicing, and nonstationary color tracking.

A target object can be captured with a single hand-held camera if the object’s environment includes reference panels, which can be as simple as flat monochromatic paper taped to a flat surface. This method relies on silhouette extraction, or taking still photographs of the object from multiple views and then removing the background by using the reference panels as a guide (Fujimura, Oue, Terauchi, and Emi, 2002). Adapting this method to a home environment, patterns on carpet or wall hangings, or even a user’s head, can serve as the reference. As few as four photographs provide enough information to capture and model a three-dimensional object. First, the image is converted into a set of regions from which the background must be removed. The second step involves volumetric modeling based on camera positioning information provided by the reference panels and the silhouette set. Finally, textures such as skin can be applied directly from the photographs to the computer model (Fujimura, Oue, Terauchi, and Emi).

The great advantage of this system is that it provides remarkably accurate models without any special hardware requirements; all that is necessary is graphical software that creates a silhouette, and a cheap hand-held camera (Fujimura, Oue, Terauchi, and Emi, 2002). However, the system also has drawbacks if used in a gesture recognition system. It is not useful for tracking moving images, and so background subtraction must therefore be done manually. Certain modifications can be applied to make it usable; a program could be written to automatically remove the background using a chroma-keying technique, and multiple cameras with quick acquisition rates could be used to capture the image silhouettes.

The Regions-of-Interest (ROI) method combines regions of space defined by a user and a spatial layout to allow object segmentation, or the dividing of an object into meaningful parts. Since the ROI method relies on context and content, background removal is automatically done in the analysis. This solves some of the problems with content-based image retrieval, mainly the subjectivity of human perception of visual content. Essentially, the system allows a user to select the relevant field of detection on a layout. Then, based of the degree of similarity between the ROI and the image block, a measure of similarity can be calculated. The user can interact with the system, identifying which retrieved images are relevant (Tian, Wu, and Huang, 2000).

This method has been used to track heads using noses as the region of interest. The nose is predefined to the computer as the part of the image with the most curvature. Thus, the computer can determine this point as the center of the face and can follow it around the screen. A major strength of this method is that it works with a simple USB camera, much like the webcams that many computers already have (Gorodnisky, 2002). However, it does have a major downfall in that a user cannot turn away from the camera or move freely around the room. While the ROI can move to different points within the camera’s field of view to search for the nose, the user must still face the camera.

The greatest advantage of this type of system is that it is user-centric, which is the goal of any human-computer interface. While defining an ROI for everyday gestures would be much too cumbersome for the casual user, the technique has great potential in high traffic areas where the field of view must be restricted. In front of a computer, for example, the field may be restricted to the immediate foreground where a person will most likely be located. In an experiment that compared the accuracy of user-defined ROIs to global picture retrieval in which fields of view are unrestricted, user-defined ROIs were shown to be significantly better than global processing (Tian, Wu, and Huang, 2000). If the object of focus is found in the given field, scanning the image becomes much faster. Even if the object is not in the given field, the field can simply be progressively moved through the image until object is located, which is still less intensive than global picture retrieval. Thus, while the worst-case complexity remains the same for both ROI and global algorithms, the former has a significantly better average-case complexity, as the chances are unlikely that an entire field would have to be scanned before locating a desired gesture.

Gray level slicing is a way of extracting the shape of an object from a set of black-and-white images. The image can be converted to a gray level histogram and analyzed for thresholds, which allows for separation of distinct objects and background from one another (Tomila and Ishii, 1994). To adapt the method to moving images, the system requires a reference image of the object either at rest or moving slowly enough to be clearly captured. Using gray-scale images allows for better accuracy than conventional color methods when recognizing pointing gestures and even when analyzing motion, as this method is fast enough to work with real-time interactive processing (Tomila and Ishii). 

There are many advantages to this method. For example, gray level slicing leads to simpler and faster processing, real-time data acquisition, and no need for special illumination (Tomila and Ishii, 1994). However, because it must be implemented against a white background, it may not be useful. A more complex analysis of the features would allow the use of any color background. If an algorithm could be written that would yield more data and a better description of features, then some of the current restrictions inherent in gray level slicing can be bypassed.

Nonstationary color tracking is another method for image capturing that allows for real-time interactive processing. The basic algorithm is based on detecting flesh-tone segments in the image and separating them from the background. Through color representations and color model adaptation schemes, the system can be adjusted to respond to the wide range of human skin colors as well as to different types and intensities of light (Wu and Huang, 2002). Previously, these databases of colors would have to be obtained manually, which made them difficult to collect a complete database. Nonstationary color tracking employs a structural adaptive self-organizing map (SASOM), which is a neural network that can be taught to adapt to changing conditions and collect a color database from its own experience. Through SASOM transduction, the weights and structure of a SASOM are updated based on previous labeled and unlabeled pixel samples (Wu and Huang).

Experimentation with nonstationary tracking system has shown it to be more effective than any previous algorithm that involves natural backgrounds, moving objects, partially obstructed objects, and lighting changes—classical stumbling blocks to proper image capture and tracking in a realistic interface environment (Wu and Huang, 2002). It is useful because it makes no assumptions about lighting conditions, quality of the background, or the object’s speed. Also, unlike any of the above techniques, it does not require manual initialization, and thus could remain online indefinitely (Wu and Huang).

Reference panels, Regions-of-Interest, gray level slicing, and nonstationary color tracking are all different solutions for discarding background noise to properly capture a three-dimensional gesture. Any of them could be adapted to work with a gesture-based computer interface. However, nonstationary color tracking and gray level slicing are best suited to the task of real-time processing. Both can be executed with limited and inexpensive hardware, and both are accurate in detecting gestures.

All in all, nonstationary color tracking seems to be the method of choice for a gesture-based interface. Not only has it been more extensively tested, which provides information in case the algorithm must be altered in some way, nonstationary color tracking operates under natural conditions without special lighting or backgrounds, and could remain operating indefinitely in a room. Implementing a system using it should provide clear, reliable models of the gesture to the next level of processing where the gesture is interpreted and executed.


There are several forms of advanced gesture-based interfaces that involve neither cameras nor wearable computers. Such interfaces, while too expensive to seriously consider using, can offer valuable concepts for a gesture-based interface because techniques for hand recognition and object tracking carry over into areas of gesture-based interfaces. Such systems include Starner's Perceptive Workbench and touchpad interfaces such as those by Fingerworks and Interlink.


The Perceptive Workbench provides an interactive desk capable of tracking objects and hand motions over the desk. It uses a set of infrared lights that illuminate the desk surface from different angles. Infrared light was chosen so that the system would be independent of ambient lighting in the room. The multiple infrared shadows, cast by objects or hands onto the desk, are detected by infrared detectors underneath. This is similar to the finger tracking system discussed earlier, but does not use infrared cameras. The three-dimensional shape and position of the object is then calculated from this information. The object can then be identified by the system if it is of a preprogrammed shape and can be tracked across the surface of the desk. The Perceptive Workbench can also identify deictic hand gestures by determining the three-dimensional orientation of the hand and extended finger. Once again, the multiple angles of the lights allow the hand to be reconstructed in this manner through the use of various mathematical algorithms (Starner, Leibe, Minnen, Westyn, Hurst, and Weeks, 2002).

In addition to its detection feature, the Perceptive Workbench also has a built-in projection system. This allows the computer to send feedback to a user by projecting images onto the desktop. The projector sits underneath the desk next to the infrared detectors, and is reflected onto the desk surface with a mirror. This allows virtual objects to be created in the computer that can then interact with the user or other objects on the desk. This feature was tested by projecting a square image onto a modified pool table. The workbench then tracked the movement of the balls as the game was played, and determined if any passed through the virtual square (Starner, Leibe, Minnen, Westyn, Hurst, and Weeks, 2002).


The Perceptive Workbench has a few design limitations. First, because the infrared light sources are set in fixed positions, only a limited number of angles can be used to determine the shape of an object. Second, all the infrared lights are mounted above the workbench, creating a cone shaped blind spot above the object. Finally, the workbench can only detect objects and gestures directly above the surface of the desk (Starner, Leibe, Minnen, Westyn, Hurst, and Weeks, 2002). These drawbacks, while not affecting the performance of the workbench itself, limit the extent to which the design can be generalized for use in a home interface.


Touchpad interfaces are capable of combining the functionality of a keyboard and mouse into a single, concise gesture identification interface. Fingerworks' touchpad is capable of displaying an image of a keyboard that allows a user to type normally on its surface. The interface can also act as a mouse; a user simply moves fingers across the surface to move the cursor and taps them to click. Most importantly, the touchpad is capable of recognizing preprogrammed hand gestures made within six inches of the screen. The gestures are then matched to specific predefined commands. For example, a user can zoom in or out by opening or closing a hand, or cut and paste something by making a pinching motion with the fingertips. The touchpad can be preprogrammed by the user to associate various gestures with different actions (University of Delaware, 2002).

Interlink's touchpad interface is similar to Fingerworks' interface, although in a different manner. Their touchpad interface is part of a universal remote, and is therefore capable of performing the various functions of a television or projector. The touchpad allows typing, accessing of on-screen menus, and gesture-based navigation. It is capable of interacting with most devices that contain a graphical user interface (Interlink Electronics, 2002).

Unlike the Perceptive Workbench, touchpad interfaces are compact and portable. While more accurate, they are much more limited in what they can detect because they require a user to either touch the surface of a pad or else make a gesture very close to the pad itself. The workbench can pick up and track a wide variety of gestures and objects anywhere over the surface of the desk. Also, due to the multiple angles of the infrared lights, the Perceptive Workbench can detect gestures in three-dimensions, unlike touchpads. The workbench and touchpads alike offer new methods of gesture-based interface to be explored (Starner, Leibe, Minnen, Westyn, Hurst, and Weeks, 2002).

Regardless of where data comes from, it is relatively easy for humans to recognize the meaning of human gestures because of social conditioning. The challenge for a gesture-based interface is to program a computer to interpret a user’s intent for a gesture. Translating the ability to interpret gestures into a set of algorithms a computer can execute is an arduous task, but neural networks can vastly simplify the process. A neural network is a “massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experiential knowledge and making it available for use” (Haykin, 1999). They are designed to emulate the brain; they can adapt to their environments and “learn” from their mistakes. A basic neural network can be programmed and subsequently trained to recognize gestures, a property called associative learning (Haykin).

Though neural networks show promise for effective gesture recognition, Hidden Markov Models, or HMMs, are also an important research consideration. An HMM consists of two stochastic layers. A stochastic layer, pertaining to probability, is “a jth-order Markov process if the conditional probability of the current event, given all past and present events, depends only on the j most recent events” (Tanguay, 1993). The first layer is a first-order Markov process that places a recognized pattern into one of a set of states. Each state has a pattern that is dependent on time. The second stochastic layer designates each state’s output probabilities, which indicate the likelihood of an assortment of observations given the state of a pattern. This second layer is a mask; it is this layer that makes an HMM hidden. If a researcher is provided with a set of observations, for example, the second layer hides the states to which these observations correspond. In training a Hidden Markov Model, a researcher clearly denotes the correlation between states and sequences of observations (Tanguay).

There are three main types of Hidden Markov Models: discrete HMMs, continuous HMMs, and semicontinuous HMMs. Discrete HMMs associate discrete probability mass functions with states, continuous HMMs associate Gaussian distributions with states, and semicontinuous HMMs are an amalgam of continuous and discrete HMMs (Tanguay, 1993). All have been employed in gesture recognition systems and are trained to identify specific families of gestures and calculate the similarity of input data to these gesture families. In other words, if a given gesture is ambiguously similar to another programmed gesture in a family, HMMs can calculate the user’s most likely intended gesture. The input data can take the form of images, sonar/ultrasonic data, or anything else that can be a gesture (Wilson and Bobick, 2001). HMMs provide a promising way to discern gestures given input data.

A salient characteristic of many of today’s HMM and neural network recognition systems is their inaccuracy. Hybrid neural network-HMM systems, which are currently used in some speech recognition systems, are one solution to this problem. Another solution involves the use of multimodal interfaces. A multimodal interface employs two or more means of accepting input from a user. For example, a voice recognition system could use both sound and lip movements to determine a user’s intentions (Oviatt, 2000). A gesture recognition system could be combined with a speech recognition system for finer gestures. For example, if a gesture depends on the number of fingers a user is holding up, a user could point and say a number at the same time to clarify the command. Such multimodal interfaces would require HMMs for voice recognition and gesture recognition systems.

5.4.5. Multimodal Interfaces


A multimodal interface is any interface which allows interaction with the computer through a variety of modalities.  These may include any form of input device (keyboard, mouse, joystick, etc.) or direct interpretation of human speech, gestures, eye position, facial expressions, or any other means in which a human could convey commands to a computer.  A multimodal interface could allow itself to be controlled individually by any of a variety of modalities or may require the interplay of input from multiple sources (for example pointing while speaking a command) or could operate on any level of functionality in between.


One of the main goals of a multimodal interface is to move towards a more natural means of interaction with a computer.  Most current interfaces are designed because of the strengths (or alternatively, the weaknesses) of the technology which is to be controlled (Flanagan and Marsic, 1997).  For example, the modern day computer is controlled by a keyboard and mouse.  The keyboard was initially introduced not because of its ease of use, but because it provided a simple, straightforward way to provide discrete characters to the computer to spell out pre-determined commands.  The addition of the mouse to the interface allowed the user to navigate the computer through slightly more familiar spatial relationships, making the first step towards a more natural means of interaction with a computer.  Both of these devices, however, are human inventions whose usages must be learned.  A major goal of multimodal interface design is to remove the burden upon the user of conforming to the technology and instead to conform the technology to the user's natural modes of communication (Bellik, 1997).  Human communication is, after all, multimodal.  We communicate our ideas and emotions not just through voice, but also through simultaneous hand gestures, facial expressions, eye contact, manipulation of physical objects, and more.  Thus, the incorporation of these means of communication into basic human- computer interaction will greatly shrink the learning curve for the use of technology and increase the pleasurability and ease of use of such devices (Sharma et al., 1997).


The second major goal of multimodal interfaces is to increase productivity and efficiency.  The theory behind this is that the combination of multiple modalities of interaction will allow a variety of individual strengths to be combined into a single interface, at the same time eliminating many of the weaknesses present in each interface (Milota and Blattner, 1995). This effect leads to a reduction in the time required to perform a given task, as well as an increase in the user's power and control over the application.  Additionally, the increased ease of use of a multimodal interface should allow a novice user to learn the interface quickly and gain a high proficiency in a very short time span (Flanagan and Marsic, 1997).


A great number of modalities have been suggested for incorporation into multimodal interfaces.  The first, and most obvious, are the traditional keyboard and mouse input found on most PCs today.  While these methods of input are not necessarily ideal for the novice user, they do provide a particularly straightforward means of input to the computer.  Furthermore, given the pervasiveness of the PC in today's society, a significantly large portion of the population has gained a proficiency in the use of these input devices.  In many cases, such devices can provide an increase in efficiency.  For example, with only a small amount of experience, a typist can introduce text into a computer faster than he or she could write by hand on a piece of paper.  Despite any shortcomings of these devices, they will most likely find a place in computer interfaces of some sort for years to come as a result of their simplicity and the familiarity that they have gained through their incorporation into the PC interface.  However, efforts will also be made to move beyond such devices as the scope of the interface to be controlled moves away from the desktop computer and towards simultaneous control of multiple systems or entire rooms.


One modality of interaction that is most commonly sought to be incorporated into multimodal interfaces is speech.  The human voice is the most frequently and expressively utilized mode of communication in human-human interaction, and as such it would be a logical step to use this modality for human-computer interaction.  The popularity of this approach can be attested to by the great variety of commercially available, as well as academically produced, speech recognition software.  These systems are, of course, not without their technical problems.  Currently, speech recognition systems are limited such that any system intended to recognize a wide variety of vocabulary must be extensively trained to recognize each individual user's voice, and any system not requiring training from the user must utilize only a small and carefully selected grammar set (Evans and Alred, 1999).  However, advancements in both computing power and design of speech recognition engines are allowing such software to become increasingly accurate and versatile, while requiring less training from the user.  Such a modality of interaction would be an invaluable tool for human-computer interaction, as it would allow the user to communicate naturally with the computer, with a minimum in training, while also increasing the speed of interaction over pointer- or keyboard-based interfaces, which can be time-consuming and may cause undue clutter on a computer screen (or other display device). (Flanagan and Marsic, 1997)


Gesture based modalities have also been suggested for incorporation into interfaces.  Such an interface utilizes either tracking devices placed on the user's body or cameras to generate computer models of hand, arm, or finger position and/or motion.  These gestures are then converted into commands which are input into the interface (Sharma et al., 1997).  Such a modality would most likely be used in specialized applications where the user needs to manipulate objects on a display.  A gesture-based modality allows this to be accomplished in a natural, spatially oriented manner, thus aiding the user in understanding the manipulations that are performed.  Such a system may also be useful in home or office applications, or in place of a speech recognition system for the hearing-impaired.  A related system is gaze tracking, wherein the eyes of the user are tracked to determine where he/she is looking.  This information can then be used in an analogous manner to the location of a cursor with a conventional mouse or for selecting objects with which to interact through other modalities.


With the combination of various modalities come a number of advantages.  In theory, the combination of modalities with complementing strengths and different weaknesses could potentially produce an interface with the strengths of both modalities and the weaknesses of neither.  The result is increased ease of use, efficiency, and power.  A further advantage comes from the realization that in creating a multimodal interface, the whole could potentially be greater than the sum of its parts.  For example, when combining to modalities, the computer not only receives the individual information from each device, but can also glean information from the way that they are used in relation to one another, for example the amount of time between input from two different sources.  As an example, one could consider an interface consisting of gesture and speech modalities.  For example, a user could point at one object, say "delete", and then point at another object.  The word "delete" may be spoken shortly after the first gesture, indicating that the user would like the computer to delete the first object and then highlight the next, or the user could have paused between the first two commands, desiring that the computer delete the second item.  The average user would expect such an understanding from the computer, just as would be expected from another human.  Thus, the combination of modalities both allows for more information to be conveyed in a shorter amount of time, but also presents the problem to the designers that the interface must be capable of interpreting the added information that emerges from the combination of various modalities.  Further problems arise in the varying processing times of different input modalities.  For example, it takes much longer for the computer to record and interpret a gesture or vocal command than it does to receive a command from a mouse or keyboard.  Such disparities in processing time could translate into the perception of events occurring in a different order than that in which they actually occurred, causing the computer to potentially misinterpret the user's intentions.  A solution to this problem would be to not only record the gesture or utterance itself, but also when it started and ended, information which is completely unneeded when each modality is used alone, but which becomes almost crucial when they are combined.  These considerations are just a small sampling of the complexity that is introduced when adding extra modalities to an interface, and demonstrate the need for anticipating the ways in which a user will want to be able to communicate with an interface and how modifications upon the parts that make up the whole will have to be completed in order to make the interface function accordingly (Milota and Blattner, 1995).


The first true multimodal interface was achieved in 1980.  This was the "Put-That-There" system devised by Richard A. Bolt.  This was an interface which allowed the user to create, modify, and manipulate objects on a screen through a combination of pointing and speaking.  Gesture tracking was accomplished by having the user wear a devise on the hand which emitted an electromagnetic field in three perpendicular directions.  Sensors in the room used this information to determine the location and orientation of the device, and therefore also of the user's pointer finger.  This data was then extrapolated to determine where the user was pointing on a screen of known location.  The interaction was completed through spoken commands taken from a grammar set that was limited, but did contain synonyms for many commands.  A command such as “create green square here” may be spoken, and the computer utilizes the words here and there to pinpoint the time at which the user’s hand is pointing at the correct spot.  The interface is simplistic, but also robust and very easy to use (Bolt, 1980). Many studies on multimodal interfaces today continue to draw upon Bolt’s successes in constructing an interface which is natural and logical to the human user.  The concepts required in designing such interfaces today differ little from what was devised in 1980.  Instead, the challenges lie in developing the technology such that the user is not required to wear tracking devices, can use a wider variety of spoken commands, and can control truly useful and possibly complex systems (beyond colored shapes on a two-dimensional screen).  Such advances would make a speech-gesture interface less of a technical curiosity and more of a familiar control system which could be seamlessly incorporated into the home or office environment.


A more recent interface developed by Corradini and Cohen in 2002 demonstrates a very similar pointing and speech interface to the Put-That-There system, but with significant advancements.  The gesture recognition engine still requires the user to wear a magnetic field tracker device.  Speech recognition was performed with a common, commercially available speech recognition engine and also used a very limited grammar set.  This system was applied not to the creation and manipulation of simple objects, but to a full-blown painting program, where the user could translate his or her motions into any form on the computer screen.  A further advancement comes in that the user does not need to be pointing at a screen of predetermined location.  Instead, the user may arbitrarily define a plane anywhere in the three- dimensional space in front of him- or herself.  The intersection of the line along which the user is pointing with this plane is then used to determine the location of the cursor on the screen.  In addition to the design of their interface, the researchers also conducted a study on the accuracy of human pointing.  This was accomplished by asking test subjects to point a laser pointer, which was turned off, at a point drawn on a wall in a way which felt natural.  Then, the laser pointer was turned on in order to determine the actual location at which the subject was pointing.  The test was also repeated with the user pointing in anything that they would consider to be an “improved” way (such as holding the laser pointer in front of the eye).  The results showed a surprising inaccuracy in human pointing.  At a distance of only one meter, an average error of 9.08 cm was recorded, which was improved to 3.89 when the subjects concentrated on improving their results.  Clearly, this inaccuracy raises some potential problems in designing an interface around gestures alone.  The authors suggest that either verbal clarification is necessary to indicate the true pointing position, or that users will need visual feedback to ensure the accuracy of their pointing.


A number of multimodal interfaces have been developed for practical purposes.  Among these is a speech/gesture interface developed by Sharma et al. for use in the manipulation of computer-generated models of biological molecules, specifically with a program called MDScope.  This system is intended to free the user from any unnatural means of interaction with the computer, including any tracking devices, headsets, or anything that would physically tether the user to the computer.  Speech recognition was accomplished with a standard speech recognition engine and a limited grammar set.  Gesture recognition was performed through the use of a relatively dark setting and a red light shown on the hand.  The researchers note that this technique was required only to compensate for the dark setting required for the 3D display of the MDScope program, and that the computers could have been designed to pick up the skin tone of the hand in much the same way as they were to pick up the red color.  Detection of the gestures was performed with two cameras and an algorithm which could eliminate the background and focus on the hand, determine the position of the fingers, and rule out any unintentional movements.  The interface accepts a specific syntax for commands, starting with a vocal “action” command, followed by a spoken or gesticulated indication of an object, and finally a spoken or gesticulated modifier.  In addition, the interface allows the user to use the commands “engage” and “release” to indicate an object and proceed to manipulate its orientation through movements of the hands.


Another multimodal system developed for real world use was intended to allow multiple computer users to engage in conferenced computing without losing any of the benefits of a live conference in which all participants are physically situated in the same room. The interface uses gaze tracking, speech recognition, and gesture/grasp recognition modalities.  The main goal of this interface is to allow natural human-human interaction through collaborative computing in a way in which the distractions of the mediating computers are minimized.  One of the ways that this is accomplished is through the elimination of the need for the navigation through menus and tool bars, as all commands could simply be spoken.  Further, objects present on the screen could be manipulated through physical movements of the hands, just as real objects are in the absence of computers.  The researchers measure the success of their system through its ease of use, the productivity increase that it yields over current means of accomplishing the same tasks, and the expressiveness it allows the users in representing complex ideas to each other. (Flanagan and Marsic, 1997)


Another issue in multimodal computing is the design of the interfaces.  As advanced as any technology may be, its incorporation into an interface is only as effective as the design of the interface itself.  Sinha and Landay conducted a survey of designers of multimodal interfaces for devices such as PDA’s, cell phones, in-car navigation systems, and video games in order to determine what methods work best for multimodal interface design.  The researchers found that all of these professionals began the process with a series of sketches, much like the storyboard for a movie, representing the look and feel of the interface and the series of manipulations the user may perform.  These sketches were then usually shared with other interface designers and modified.  After this, some form of prototype would be made to allow for testing of the interface or at least to generate a good idea of its feel.  Generally, this was reported to be one of the most difficult aspects of interface design, as truly working prototypes could usually not be made due to limitation in concurrent hardware design or the time required to program a fully functioning interface.  The authors suggested a modification of the prototyping system to use a “Wizard of Oz” technique, where the user would give commands to the interface just as if it were working and a figurative “man behind the curtain” would mimic the results of the theoretical working interface.  Such a system allows interface designs to be tested in the same way as a fully functional prototype without investing the time required for fully developing an operational system.


Multimodality in interface design allows for control over a variety of systems in a way which is comfortable and natural to the user.  As technology advances away from the single user PC and into a variety of connected devices, multimodal interfaces will need to be established which give the user the freedom to control a range of devices without being tethered to any single device, or possibly even to any single means of interaction.  Human interaction is, by nature, multimodal, taking cues not only from the spoken word, but also from gestures, facial expressions, and variety of context-related variables such as location, time, and the relation of the conversants.  For any human-computer interaction to truly become seamless with its environment, it will need to incorporate as many of these modes of communication as possible.
6. METHODS

6.1. User-Centered Design Methodology


The design methodology used by our team was first presented by Don Koberg and Jim Bagnall in the textbook The Universal Traveler: a Soft-Systems Guide to Creativity, Problem-solving, & the Process of Reaching Goals.  We chose this particular methodology because it is most appropriate for a user-centered engineering project.  The described process of design has seven stages: acceptance, analysis, definition, ideation, idea selection, implementation, and evaluation.

6.1.1. Acceptance


During the stage of acceptance, the main goals are recognizing that there exists a problem with the status quo and becoming committed to redesigning a current system to solve these problems.  Having already conducted our literature review, our team began brainstorming a starting-point to begin investigating the home environment more directly.  We defined the home environment as the ecosystem of devices and appliances that users would interact with throughout the home.  From this working definition, we began isolating the control problems within the home environment.  Our team developed the historical analysis in Appendix D to develop context for the home environment with the goal of helping us discern how problems arose and analyzing how current problems are being met.

The results of the historical analysis portrayed how badly the smart home needed a user-centered approach.  The automation paradigm for smart home technology was the only technique focused on enabling and empowering the user to control their system.  The digital hub and intelligence paradigms both focused on reducing and simplifying the home environment for the user.  Although one of our core focuses was making user’s lives easier, our goal was not to take the user or devices out of the system.  We wanted to streamline how a user interacts with all of their systems.  Our historical analysis showed that very few systems existed to serve this need; the only off the shelf solution available for integrating devices in the home was the twenty five year old X-10 standard.  The identified shortcomings of the existing systems became the motivation for the design process

6.1.2. Analysis


The analysis stage involves conducting an exploratory interview with potential users focusing on each person’s specific relationship with the technology in question, problems the user may encounter in day-to-day interaction with this technology, and specific user requests for future improvements.  Our team conducted a user study consisting of fifteen hour-long interviews with potential users.  We identified our target audience to be people who are either currently homeowners or will become homeowners in the next 5-8 years.  The mean age of the sample was 29 years old, with a standard deviation of 13 years.  The team chose to focus on a younger age range, because our product would not be likely to enter the market for the next five years, as it requires a degree of cooperation from appliance manufacturers (therefore a significant start-up time).  These interviews consisted of open-ended questions that invited the user to tell a story about how he or she interacts with technology, in general, and more specifically, the devices in his or her home.  The interview especially focused on the user’s relationship with the suite of devices in the “home theatre.”  A list of potential questions asked during these interviews can be found in Appendix A.
6.1.3. Definition


The goal of the definition stage is to use data gathered in the analysis stage to identify and name key user personas and goals of these personas.  A persona is defined as a fictitious user representing a whole class of potential users.  A persona represents the key behaviors, attitudes, and goals of its constituents.  Personas provide clear, distinct, and articulated goals and allow the designer to focus on the primary user of the system rather than designing for an unlikely edge case.  Using personas also solves the design problem of self-referential design, which is when a designer adds features that he or she may want rather than basing the project on user needs and goals.  We conducted a hierarchical cluster analysis of the user data from the exploratory interviews, ranking the users on three scales: comfort with technology, willingness to adopt new solutions, and the desire for flexibility and control versus the desire for ease of use and automation.  The analysis identified three distinct clusters of users.  We identified the group of users characterized by a high level of comfort with technology, high willingness to adopt new solutions, and high desire for flexibility and control as our primary persona.  The five major goals of this persona are to be able to use every feature of a device, to control devices through a central locus, to coordinate the activity of devices, to easily switch modes between devices, and to quickly add new devices to the system.  A more detailed description of the results of this user study, including other personas identified, can be found in the next chapter.

6.1.4. Ideation and Idea Selection

The goal during the ideation stage is to consider as many ways to achieve user goals as possible, integrating both existing technology and original ideas, and finally selecting which ideas would actually be implemented.  We generated a set of likely use cases that our system should support (Appendix C) and considered several possible configurations for our system that would support the listed tasks.  We decided to focus our system on four main features: interfacability, scripability, ease of networking, and security.

Interfacibility is the ability of external systems and users to take control over a system; interfacibility moves a device from its own self-contained world to that of a full fledged citizen of the home’s ecosystem of devices.  This criterion is essential to building the future smart home: users need to be able to control their devices through means of their own choosing, including if they so opt, through other devices.  This requisite comes with a two criteria; devices must be controllable by external systems and external systems must be able to exert full control over the device.  Certainly a device’s own proprietary interface is important in determining the usability of a device, but users also need the ability to perform the same control from a central locus.

To harness the interfaces of these networked devices, users need scripting capabilities to both compose and event functionality.  Interfacibility enters the device in to the network of devices which makes up the home environment, scriptability defines the user’s ability to harvest and shape this network to their own design.  Without a means to script devices, users cannot extract the functionality they want to build.  Scripting is integral for fulfilling the primary persona’s desire to configure their devices.  The secondary persona should not have to deal with the scripting systems, but ideally scripting would be simple enough that the potential exists.  Scripting capabilities fall outside the obligation of the device.  Typically, Scripting is done by orchestration systems and interfaces.  The central interfaces which harvest the interfacing properties of individual devices are responsible for developing and presenting the scripting capabilities to users.  By exporting their interface, devices allow themselves to be used by these scripting systems; the device itself is not responsible for setting up scripting. 

The ability to respond to changing network and device configurations is one of the prime reasons for enhanced control.  Currently, installing new devices is itself a technological barrier for many users.  Home theater systems are notoriously hard to set up, requiring arduous cable routing and equally difficult menu configuration.  The ability of a networked automation system to forgo or simplify many these initial configuration steps is one of the primary raisons d'etre for a networked home ecosystem.  With wireless systems, a new device just needs power before it is automatically located and configured through the home’s device network, giving users a clean and consistent.  Enhanced device setup paves the way to easier installation for both primary and secondary user personas.

Within the context of the home, it is assumed the user has a firewall router which protects the home from unauthorized internet intruders.  Beyond that though there are still a number of technical security barriers that a device ecosystem has to overcome.  In most cases, the home is a social hierarchy; not all users are equal.  Parents should be able to opt to control their children's viewing habits, for example.  The device network must account for this.

6.1.5. Implementation


We implemented the features listed above in three separate components of the system.  The first component is the hardware involved in modifying devices to be able to communicate with the server.  The second component is the software and server involved in making such communication possible and storing information about every connected device.  The interaction of the first two components provides the system with interfacibility.  Since the server is built to recognize and install devices automatically using Microsoft Universal Plug ‘n’ Play, these server component removes the burden of installing and maintaining a network from the user.  Finally, the last component is the graphical interface that provides the user with the means to communicate commands and queries to the devices through the server.  The graphical interface provides the user with scripting capabilities as well as user-level security.  The details of the implementation can be found in the results section.

6.1.6. Evaluation


The evaluation stage consists of generating specific tasks to test with real users and conducting a usability study measuring how potential users complete these tasks.  We asked six potential users in the same population as our first user study to complete seven sample tasks using the graphical user interface we created.  The procedure for the study and the list of tasks can be found in Appendix B.  We measured the time it took to complete each task and whether the task was completed correctly.  We also conducted a short interview after all the tasks were completed, asking the user whether the system was flexible enough to meet his or her needs and whether it was easy or difficult to use.  The detailed results of this study can be found in the next chapter.

7. RESULTS

7.1. User Study 1: Identifying Personas and User Goals

To get an accurate characterization of the home environment, we interviewed 15 potential users who are either currently homeowners or will become homeowners in the next 5-8 years.  The mean age of the sample was 29 years old, with a standard deviation of 13 years.  The team chose to focus on a younger age range, because our product would not be likely to enter the market for the next five years, as it requires a degree of cooperation from appliance manufacturers (therefore a significant start-up time) Out of the 15 people interviewed, 5 currently owned a house.  The interviews were conducted in the participant’s home or office to allow him or her to use devices as props in answering the questions.  The goal of this study was to answer the question of what the user wants from a device-networking system and how existing solutions are inadequate.

7.1.1. Phenomenological Data

Out of the 15 people interviewed, 9 stated that they were comfortable or very comfortable with technology and computers.  Three said that they were “sort of” comfortable—they used the technology without any trouble, but turned to others when something went wrong.  Another three said that, while they use technology and computers often, they have trouble or find it annoying at times.  One of these three exclaimed: “Machines don’t like me!”  It is interesting to note that the mean age of those comfortable with technology was 24, while the average age of the people in the other two categories was 37.

11 of those interviewed said that when a device or program breaks or does not do what they expected, they usually play around with it on their own until they figure it out.  5 users explicitly mentioned using Google.com as a resource to find others with similar problems and see how they found a solution.  4 said that their first step when something is not working properly is to ask another person for help.  6 of the 15 said that they can usually solve the problem themselves, but do not like how much time it requires.  Only 1 person mentioned using the built in help features.  Nobody said that they refer to manuals; most said that they do not even keep the manuals.  4 of the participants exhibited symptoms of “computer rage” – a state of frustration and a desire for violence against the device.

Most common “home theatre” devices listed were TV, DVD player, VCR, stereo, and the various speakers and remotes that are necessary for those.  5 also owned various video game systems.  13 out of the 15 people own more than one remote for controlling their devices.  Out of those 13, 11 said that they do not use all of the remotes on a regular basis.  4 own and use universal remotes, however 3 of those still have to keep the original remote to each system, because it is sometimes required to switch modes.  For example, one user said that his universal remote could do everything except switch the television input between cable and VCR (for that you need the VCR remote).  6 of the 15 implicitly mentioned the computer as having a role in their “home theatre.”  Most of those used their computer to listen and catalogue music, or watch movies.  13 out of the 15 people use their “home theatre” every day; the remaining 2 use it about every other day.

When asked about the problems or frustrations that they may experience with their current home theater, three most commonly reported problem were with using remotes, switching modes, and remembering how to use a certain feature.  Almost every user reported that the remotes in some way contributed to their frustration.  The most common problem was that while there is one “primary” remote that was used the most often, the other remotes were still required for a few necessary functions.  The second issue reported by almost every user was the annoyance of losing one or more of the remotes.  Finally, 3 users also reported frustration with inconsistencies in the labeling and function control between multiple remotes.  The example given was that the procedure for turning on closed captioning for a television show was significantly different from the process for turning on the closed captioning for a DVD movie.  There were 6 users who cited problems with switching between different modes of input for the television.  One example given was that the user’s Gamecube game was not saved unless a procedure of switching modes was followed exactly.  Two of these users stated that they had trouble remembering the exact steps necessary to switch to a different mode, especially if it was not a mode they used often.  Three other users also cited trouble remembering how to use uncommon features.  One user said that she did not record anything on the VCR because she just could not figure out how to set the system correctly and the VCR did not provide any sort of help or prompt.

When given the opportunity to suggest features for the product, several of the users mentioned that they would like to see “mood” settings for their home, like the level of lighting responding to the actions of other devices.  A few also mentioned specific devices whose actions they wanted to coordinate.  For example, one user said that she always turns off the dehumidifier (which makes a distracting noise) before watching TV, and it would be less tedious if this could be handled automatically.  However, two users also cautioned that it would be “creepy” if they did not understand or have control over what was happening.  Three users felt uncomfortable with controlling the devices in their homes exclusively through a voice-recognition system because they felt that such a system was inherently unreliable.

7.1.2. Cluster Analysis Results

Each participant was rated along three axes: comfort level with technology, preferring the status quo (low) vs. seeking new solutions (high), the need for automation/simplicity (low) vs. the need for control/flexibility (high). 

	Scale
	Mean
	Std. Deviation

	Comfort With Technology
	5.20
	2.81

	Status Quo vs. Seeking New Solutions
	4.47
	3.23

	Flexibility and Control vs. Automation and Simplicity
	4.80
	2.65


The scores for each individual were then analyzed using hierarchical cluster analysis to identify complimentary characteristics of users.
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Each digit, or the leaf, on the dendrogram represents an interviewed user. The branching of the dendrogram represents significant point of departure along some set of statistics.  In this case, the first major branching is best characterized by a difference in the “status quo vs. seeking new solutions” scale.  All users found along the top path showed high capacity for adopting new technology.  Three distinct clusters of users can be seen, where cluster 1 and 2 (numbered from the top) are more closely related than cluster 3 is to either of them.

	Scale
	N
	Mean
	Std. Dev.

	User Cluster 1:

	Comfort With Technology
	5
	8.00
	0.71

	Adopting New Solutions
	5
	8.40
	1.34

	Control/Flexibility vs. Automation/Simplicity
	5
	8.00
	1.00

	User Cluster 2:
	
	
	

	Comfort With Technology
	4
	6.25
	0.96

	Adopting New Solutions
	4
	4.00
	1.15

	Control/Flexibility vs. Automation/Simplicity
	4
	4.00
	0.58

	User Cluster 3:
	
	
	

	Comfort With Technology
	6
	2.17
	1.17

	Adopting New Solutions
	6
	1.50
	0.83

	Control/Flexibility vs. Automation/Simplicity
	6
	2.33
	1.03


The clusters are identified in the above table. The top cluster, containing users 4, 7, 6, 10, and 12, shows score on the high end of all three scales.  The middle cluster, containing users 1, 8, 11, and 14, is composed of interviewees who score moderately high on the comfort with technology scale, but are not eager to adopt new technologies and are satisfied with the status quo.  They prefer a balance between control/flexibility and automation/simplicity.  The bottom cluster containing users 2, 3, 5, 9, 13, and 15 has greater variability in the level of comfort with technology.  However, the average member of this cluster does not feel comfortable with technology, is not willing to adopt new solutions, and prefers automation and simplicity to greater flexibility and control.

7.1.3. Defined Primary and Secondary Personas

The primary persona we decided to select for this project is the amalgam of the top cluster user.  The primary persona feels comfortable with technology, feels dissatisfied with the status quo and willing to adopt new technology, and prefers greater control and flexibility in a system.  The reason we selected this type of user as our primary persona despite the fact that it is not the most numerous is because of the significant split between this user and others on the “new technology adopter scale.”  Quite simply, this user is most likely to acquire and use our product at this stage in the development of home technology—somebody who feels satisfied with the status quo is unlikely to utilize our product.

On the other hand, we also recognize that once the primary persona adopts the system, it will be installed in a home environment.  This means that users from the other two clusters would also likely have contact with it.  For this reason we identified two secondary personas, both low on the “adopt new technology” scale.  The first feels moderately comfortable with technology, but can vary considerably in the degree of control or user-friendliness required.  The second persona feels uncomfortable with technology, prefers a high-level of automation, and desires considerable support when using the system.

7.1.4. Identified Goals

From the phenomenological data gathered by the interviews of the five users that constitute the primary persona, we determined the following to be the goals that our system must meet:

1. Be able to use every feature of a device

2. Control devices through a central locus

3. Coordinate the activity of devices

4. Switch modes between devices

5. Add new devices to the system

The goals of the two secondary personas focused less on coordinating the activity of devices and adding new devices to the system.  However, these users showed a greater interest in being to control devices through a central locus.  These two personas also added a new goal: be able to meet the other goals with adequate support and instruction.  While meeting the goals of the primary persona will take priority in our design, we must also consider the needs of the secondary personas.

7.1.5. Applying Results to Product Design

Since this survey is part of the design process of a product, what we learn must be applied back to the practical concerns of fulfilling the users’ needs.  Now that we have answered the question of what the user wants from the device-networking system and why the status quo is inadequate, we can address the question of how to solve the problems and give the user what he or she wants.  The following is an overview of how the system meets the goals of the primary user while providing support for the secondary user.  

Our system provides the means to use every feature of every device in the user’s home, because the user is no longer at the mercy of eccentric device controls or misplaced manuals.  The Universal Device Interface provides just that—a single, universal way of controlling every device.  The user only has to learn how to use our system to be able to use every device in his or her home with equal ease.  We will support the user need to control devices through a central locus by providing multiple points of access with the capability to access all features of the system.  Our design focuses on touch panel interfaces distributed throughout the house, as well as a computer interface that can be accessed from the user’s home computer.  However, since new interface plans can be added easily, the user could choose to expand the system by adding such things as a voice-control interface, a way to access the system from a mobile source like a hand-held PDA, or even a gesture-control interface.  By adding additional interfaces, the user will be able to take advantage of the greater reliability and ease that multi-modal interaction provides.  By allowing easy expansion, we hope to capitalize on the primary user’s characteristic of seeking new solutions and adopting new technologies.  To support the coordination of devices, we are adding scripting capabilities to our interface, which will allow the user to associate the actions of devices and schedule automatic tasks.  Despite the fact that this setup will allow for greater automation, we are supporting the primary user’s need for control and flexibility by allowing him or her to micromanage the actions of their devices.  This ability also allows the user to simplify the process of switching modes in the system by simply combining the actions for switching modes into a script.  Finally, the process of adding new devices to the system is made simple by utilizing Universal Plug and Play protocols.  Adding a new device to a room is as simple as simply bringing it into the room and turning it on.  The device can then describe itself to the server and add itself to the list of available devices.

To meet the secondary personas’ goals for greater support without sacrificing the primary user’s need for greater flexibility, we incorporated several levels of “wizarding support” into our interface.  A wizard is a program dialogue that walks the user through a task step-by-step.  We provided the user with three ways of controlling devices.  The most comprehensive wizard takes the user through every step.  The intermediate level of interaction condenses the process into two or three steps.  Finally, the advanced user can edit the script directly.  No matter what interface the user decides to utilize, he or she can still access all of the capabilities of the system.  The only component that varies between modes is the level of support provided for the user.  Finally, to support the diversity of people that may use the system, we also provide two different methods for browsing devices.

7.2. Implementation Details


The implementation of the Universal Device Interface consists of several components.  The first component is the hardware involved in modifying devices to be able to communicate with the server.  The second component is the software and server involved in making such communication possible and storing information about every connected device.  Finally, the last component is the graphical interface that provides the user with the means to communicate commands and queries to the devices through the server.  This section will describe the implementation of our proposed solution to the issues of home device automation discovered through the first user study.

7.2.1 Hardware Implementation

One of the integral components of the Universal Device Interface team's system was a device network to automate control over home appliances.  Envisioned as a system that integrated into existing appliances and devices, SpiffyNet serves as a convenient means of exporting control of existing appliances to computer network.  SpiffyNet is the bridge between devices, and the device server and its corresponding interfaces.  Through the SpiffyNet system, individual appliances and devices in the home can be reworked to be network accessible, allowing them to enter into the ecosystem of the automated home.

Design Specs

The Universal Device Interface team built the SpiffyNet platform against a number of key design specifications to make it as easy as possible to integrate into existing appliances.  The main design specification was simplicity; the entire architecture, hardware, software, all components were to be as easy to work with as possible.  Furthermore, the platform had to be adaptable to permit integration into a variety of systems.  If possible, the system should use existing communication systems instead of building its own.  Cost and size were additional factors, the goal being to allow developers affordably integrate the system into potentially space-constrained consumer appliance.  Lastly, the system has to be capable of independent operation from a computer such that server outages do not affect running devices.

Existing Systems and Resources

The SpiffyNet system derives from many other projects and technologies, foremost the Electronic Industries Alliance’s RS485 (Stanek, 1997).  The two most direct ancestors are Edward Cheung's home automation system (2005), and the ROBot Independent Network, ROBIN (n.d.).  Both of these systems use multi-drop serial to link a large number of network nodes into what is roughly a bus topology for device control.  These were invaluable resources along with ePanorama's data communication (2005), and light dimming (2005) resources.  National Semiconductor's Ten Ways to Bulletproof Your RS-485 (Goldie, 1996) also came in very handy.

Components

SpiffyNet consists of two main technologies that work together in unison to allow device control; the SpiffyNet packet protocol and a SpiffyNet node to actualize this protocol into control.  We have our own implementation of the SpiffyNet protocol, SpiffyNet base hardware platform.  Both the SpiffyNet packet protocol and base hardware platform are available for free use under the Academic Free License v2.1 (Rosen, 2003).  The SpiffyNet protocol is a protocol designed for optimal short message transfer across an open network, such that any network nodes can issue simple commands at low cost across the network to any other device.  The SpiffyNet base hardware platform is an implementation of the SpiffyNet protocol onto a system-on-chip microcontroller with additional facilities to actualize physical control over devices.  Multiple base hardware platforms can connect together to form a device network capable of autonomous functionality, although in most cases this functionality is governed by a computer system connected to the SpiffyNet.

The hardware platform provides a reference design built to allow for the addition of templated devices, such that developers can easily build a hardware node to their own specifications and needs.
The SpiffyNet Protocol

The SpiffyNet protocol is a packet specification designed for short variable length short messages; one to sixteen byte packet lengths.  The protocol is master-less, such that any system on the network should be capable of initiating a message transfer.

A header byte consists of two nibbles; a packet header nibble and a packet size nibble.  After this follows a device byte, which indexes any of the various peripherals or controls within a single node.  Optional address bytes to specify recipient and source run at a network specified runtime adjustable 1-4 bytes each.  All remaining data is the data packet, with size specified in the header byte.

Beyond merely packet format, the SpiffyNet protocol also standardizes a number of standard network packets used for system configuration.  The majority of these functionalities relate to addressing on the SpiffyNet network.  Devices have both a unique identifier and a network address.  When joining a SpiffyNet, devices send a request for network entry along with their unique identifier, and wait for a return message instructing them on the current network settings and their operating address for the duration of the connection.  This allows for device accounting (seeing who is currently on the network) and insures a maximum device density on the network while keeping addressing down to the minimum possible size: in almost all case the network can use one byte addressing between nodes.

The SpiffyNet Hardware Platform

The SpiffyNet hardware platform is a reference hardware implementation of the SpiffyNet protocol designed to take control of existing appliances.  The platform is driven by an Ubicom SX (“SX Family,” n.d.) chip that asynchronously bit-bangs network access while still reserving a majority of resources for general purpose I/O control over slave appliances.  The hardware platform was designed to be compact, taking up minimal processing time and 48 bytes (including 32 bytes of buffers) of the Ubicom’s 136-byte ram.  It serves as an effective framework from which to control devices, build peripherals and extend control.

The SpiffyNet protocol is extensible to any number of physical interconnects, however it was implemented on the SpiffyNet hardware platform under the Electronics Industry Alliance RS-485 differential signaling specification chosen for its support of long distance wire runs, noise resistance, and multi-drop capabilities.  The underlying RS-485 industry-standard physical signaling specification provides a common bus that the SpiffyNet hardware platform or any other implementation is free to access.  As stated, the SpiffyNet protocol is a master-less communication system.  To allow for multiple devices to talk to each other without hazard, SpiffyNet defines a mark-domination smart recovery system for collision handling which eliminates the need to fully abort and retry both transmissions.  Full details are available at the SpiffyNet website.

The hardware platform works by using the timing subsystem to synchronize the system to the network baud rate.  At boot up, the system monitors network transitions for auto baud initialization.  It then uses the generated timing information to bootstrap itself into operation as a network device; the baud rate becomes the system “tick” interval.  There is an inherent tradeoff for using higher baud rate; higher baud rate gives higher message throughput, but less time between ticks for the system to complete an entire self update.  Lower baud rate allows the system more time for internal computation between ticks, but lowers the message throughput over the network.  Experimental results indicated that 19200 provided the ideal compromise, such that both system update time and message throughput had safe operating headroom for most operating procedures. Devices running on the chip are free to operate within their own limited memory constraints with the additional benefit of four bytes of memory dedicated to the purpose of “working registers” (the SX chip is a one working register, limited memory processor).  The main assistance they receive from the SpiffyNet platform is a packet messaging infrastructure which enables them to easily send and receive messages and commands, and access to system timing data.  System timing information comes in a number of formats: the global timer, and the optional the AC and system timers.  The global timer increments once every tick, providing basic system timing for all devices.  

The other two timing counters are optional, and allow programmers to synchronize the hardware platform to the wall’s 60 Hz AC power.  The AC timer counter is provided by a zero crossing detection subsystem (Maste, 2000) on the hardware platform; it increments in step with the global timer but resets to zero when a zero cross is detected.  The system timer increments when it detects this zero cross.  These two timing systems enable for controlled synchronous pulse width modulation of frequencies relatively lower than the system baud rate; this is useful in applications like light dimming.  Note this gives an increased system baud rate another advantage: higher accuracy modulation.  At the default network baud rate, 19200 baud, with 120 half cycles per second (19200 cycles / 120 intervals) gives a 160-step modulation against the AC signal, or in other words, 160 potential brightness levels.

Devices on the Hardware Platform

At program time, developers can add individual device modules to nodes to provide specific device or peripheral functionality; developers might add switches, light dimmers, a TV or CD player devices to a node.  Once the node has been programmed, it becomes a matter of inserting the system on a chip into the device such that it can intercept and control the target devices.  The goal of the system was that a common hardware platform could provide a flexible enough base to easily allow for insertion into a variety of such devices.  To promote maximum flexibility and convenience, the SpiffyNet hardware platform has the concept of a device stack comprised of device modules.  This allows the hardware platform to be easily adapted for various uses.

The device and peripheral integration extends beyond the realm of the physical hardware board though.  Ubicom’s SX chip had a similar concept from the start; Virtual Peripherals (Newton, 2004) serve to perform similar time slicing to allow multiple peripherals to share a single processor.  Devices in the SpiffyNet system were envisioned with a similar purpose, but as two distinct components; onboard code for the SX chip itself (conformant to the SpiffyNet hardware platform) and a device description and interface in a computer usable format.  The other main advantage of SpiffyNet devices is that they can take advantage of the resources provided by the SpiffyNet hardware platform.

The SpiffyNet protocol already provides a unique identifier for each node.  Coupled with the computer interface specification for each device, a computer attached to a SpiffyNet can enumerate the available devices and act as a gateway to those devices for other systems.  The primary use case Universal Device Interface team envisioned was to have the gateway computer generate a software Universal Plug and Play device which links to the actual device.  Internally, a software bridge reduces a device’s functionality into a C# object, which can then harvested by the runtime system to generate the corresponding virtual Universal Plug and Play device.  Through this process, when a node connects to a SpiffyNet, its corresponding UPnP devices will automatically appear and get broadcasted to the computer network, much as if the device itself were a TCP/IP device generating the UPnP device.

Status

At the current stage, the SpiffyNet system is not entirely complete.  Particularly, many of the details of the device stack are not fully implemented; devices are modular but their values hard coded.  The ultimate goal is an actual drag and drop interface for device building, allowing developers to drag devices to their desired location on chip.  The computer interface for the devices is also incomplete; currently devices use non-portable hard coded messages to implement control.  

The initial design for a modular system for these tasks was a custom SQL database, one that ultimately proved too unwieldy to meet the dynamic needs of varying devices.  The revised design is still under construction, but uses a runtime object system to simplify relational mapping, overcome impedance mismatch and vastly reduce development efforts for device builders.  The new framework also provides a clean system for storing preferences; a light which was on before getting unplugged could remember that it was on when it’s plugged back in.

The key component absent in the new system is a device description language to link a device's UPnP functionality to the actual code to be executed.  In many cases, its simply a matter of sending off a parameter to the device in a message, but there are many advanced cases where the gateway will need to do processing first.  Building a description language to cleanly bridge this gap has pr oven non-trivial.

The hardware behind the SpiffyNet hardware platform is, however, fairly complete and undergoing testing.  The current production platform has eight light dimmers built in, and still has plenty of CPU left for other tasks.  Nodes built now with hard coding should still operate under the final software system without revision, even if they lack some future functionality.  Furthermore, the SpiffyNet hardware platform uses sockets for the SX chip, so users can update the code at any point in the future.  The primary missing elements are device building tools and a database to harvest network nodes to cleanly expose Universal Plug and Play interfaces.

Integration

The SpiffyNet hardware platform was designed to be inserted into existing systems to export an appliance’s control to a computer network.  To do this, a node has to be overlaid on top of an appliance's existing control.  For appliance's which use 3.3 – 5 volt signaling on their physical interface (i.e.: buttons), node insertion can potentially be as simple as soldering a wire from the node to the target button's receiving terminal and sourcing from a common ground.  However, many devices appear to have encoded physical interface panels.  In these situations, Universal Device Interface team wired a node-controlled relay in parallel with the button; turning on the relay was like hitting the button.  A typical SpiffyNet node has seventeen I/O pins, which should be sufficient for most appliances.  There are other SX chips available capable of running in the Spiffy hardware platform with over forty pins of I/O.

There are some dangers associated with this form of taking control.  Many devices are stateful in nature; the volume button might navigate a menu when the device is in menu mode.  To make sure that a device is actually adjusting the volume and not navigating a menu, the node needs to be aware of the device's state.  Sometimes the solution is trivial; prefix every command with a couple of exit menu commands.  But this is crude, the real aim would be to monitor an appliance's interface directly, or by monitoring any input coming into a device: neither of these cases are trivial.  Even the average VCR clock probably has seventeen pins of I/O associated with it, and that is assuming there are no on screen menus which need monitoring to get this information.  Watching for button presses is a lot easier, but does not account for the use of remote controls.  For the truly adventurous, we suggest putting IR blocking tape over the device's IR sensor and attaching an IR sensor to the computer.

Many devices already come with similar embedded processors for internal device control; they simply do not expose this control to outside systems.  Instead of adding our own processor just to physically usurp user control of an existing system processor, SpiffyNet was designed with a simple network protocol so existing systems could be revised to offer a SpiffyNet interface.  Since the SpiffyNet system is offered under the Academic Free License v2.1, companies are free to take and modify both their design and the SpiffyNet to their choosing.  Ideally, we hope device manufacturers might choose to use SpiffyNet or any standards compliant automation system like xPL (2003) to expose their devices control.

Alternatively, the SpiffyNet hardware platform provides an easy and powerful programming environment capable of being adapted and built upon to act as the central system processors for many common household appliances.  Simple devices like microwaves or stoves already have microcontrollers, but their functionality should be relatively easy to subsume into the SpiffyNet hardware platform.  This gives manufacturer's known compatibility with the SpiffyNet system and a powerful hardware platform to work from.  

Whether it's manufacturer's opting to integrate into the SpiffyNet system or manufacturer's using the SpiffyNet hardware platform, SpiffyNet provides open options to facilitate easy integration for external control.  The real point of the SpiffyNet platform is that there are no excuses for device egocentricity that external control is already at the point of commoditization.

7.2.2. Device Communication Implementation
The Universal Device Interface (UDI) system has three important components: the devices, the device server, and the interface(s).  The intention of this section is to give an overview of the device server and how it interacts with the other two components.  In this chapter, we describe the operating principles of our device server, the protocols governing its internal and external communications, and the technical details of its implementation.
In this section, we make certain assumptions about the technical knowledge of the reader.  The reader should be comfortable with computers and familiar with the open source operating system Linux.  Knowledge of the following topics will also aid the reader’s understanding of the material: file system layout in Linux, the TCP/IP communication protocol, SQL database systems, and the HTML markup language.  A reader who is familiar with this technology should be able to replicate our work from the implementation details described below.
Purpose and Goals of the Device Server
We built the device server to streamline the design of user interfaces (e.g., command line interfaces and graphical user interfaces) that are presented the end user.  The device server gives interface writers a simple, abstract means of communication with devices.  We had the following goals in mind when designing the device server: 1) to provide one or more protocols through which devices may describe their capabilities and functions; 2) to convey the functions to user interfaces on demand using a unified protocol; 3) to store the functions while the devices are available for use, minimizing network traffic for user interface operations.
The current design of the device server accomplishes these goals.  The device server uses Microsoft’s Universal Plug’n’Play (UPnP) protocol for communication with devices.  This protocol permits devices to announce their arrival in or departure from a network.  It enables the devices to list the functions they perform and the variables they can be assigned to monitor.  This protocol’s chief strength is that it is broad enough to accommodate every device server goal stated above.  Its chief weaknesses are that it is rather cumbersome to use and most likely too complex to program into small devices.  We will describe later how we circumvent these issues.
In our project, an SQL database performs tasks that complement those of the UPnP protocol.  The database retrieves information through the UPnP protocol and stores it for the duration of the corresponding devices’ presence on the network.  The user interfaces communicate with the device server through this database, reading device descriptions directly and inserting device commands into a table.
Theory of Operation
We developed a very general framework for device communication to facilitate programming of user interfaces and to give them control a wide array of devices.  This framework is centered around the concept of nodes.  A node has the following mandatory attributes: 1) a short name that may be provided by the device (under 32 characters), 2) a long name (under 128 characters; if not provided by the device, its value defaults to the short name); a unique string (the so-called node ID) that is given by the device server (but may be suggested by the device as a serial number or other identifier).  A node has the following optional attributes:  1) an icon, 2) a vendor, and 3) a URL to the vendor’s website.
The recommended mode of operation for user interfaces is to “navigate” amongst the nodes one node at a time.  For example, the Interface may start at the node labeled “Toaster” and present the user with the information stored about the toaster, as well as links to other areas of the graph.  From there the user may choose to proceed to the “Toast” node, whereupon he will be given the opportunity to execute that node’s function (i.e. to toast the contents of the toaster).  This is not the only mode of operation made possible by this framework but it is the simplest that comes to mind.
Several “Artificial” nodes that do not represent any tangible Device may exist.  The “Home” node, for example, is a node created by the Device Server that is a recommended starting point for navigation by the Interfaces.  Other “Room” nodes may be possible to group Devices so they are not presented as one large, cumbersome list (i.e. link to kitchen Devices from the “Kitchen” node).  Note that at present there is no simple way for the Device Server to categorize Devices by room or even by function, so creation and maintenance of category nodes like the above mentioned Room nodes are the responsibility of the User Interfaces.

Other Artificial nodes may exist but may not be purely organizational.  A “clock” node for example may be created by the Device Server or perhaps by a piece of software on the network to issue the correct time to any querying Interface.  Note that this framework is broad and general enough that the possibilities for nodes in this system are not limited by the examples listed here.
Device Server Operation
As the sole communicator with the Devices, it is the responsibility of the Device Server to render them into nodes for presentation to the Interfaces.  The Universal Plug ‘n Play protocol makes this possible, if not easy.  On startup, the Device Server emits a “discovery” packet on a multi-cast address that is designated for use with UPnP.  All UPnP Devices listen on that address and will respond to the discovery packet with their own packet sent back to the address the discovery came from.  All Devices that enter the network after this point will emit their own discovery response packet on entrance, so constant discovery queries by the Device Server are not necessary to keep the network up to date.  This response packet contains some information that is useful to the Device Server, such as the length of time for which that response is valid, among other things.  The most important part of that response, however, is the URL of the “description” page.  The description page is an XML document containing a large amount of information about the device, including all the attributes desired by the framework as well as a list of “services” the Device offers (UPnP Device Architecture).  The Device Server retrieves this document and starts sorting out the information in its SQL database.  The Device Server also generates a node ID for the Device, using any supplied serial number in the description page as a suggestion.
Then the Device Server starts requesting information about the Device’s services.  These services, as defined by the UPnP protocol, may contain functions and variables (UPnP Device Architecture).  The functions can be executed and the variables can be queried or passively monitored for various conditions.  Each function and variable becomes its own node, with links to and from the originating Device.  Any function that declares it is related to a variable (as an argument or a return value) also has that variable linked to and from it.
When this process is completed for each Device that responded to the discovery packet, the Device Server’s most difficult responsibilities are accomplished.  At this point the only responsibilities of the Device Server are to respond to new Devices on the network (as described above), to remove or attempt to renew Devices when their descriptions expire (or when they send a message explicitly stating their departure from the network), and to respond to SQL requests from the User Interfaces.
The management of SQL requests is an important process, as it is the sole means of communication with the User Interfaces.  As part of the Device Server, an SQL database is maintained in an SQL server.  That server is sufficient to respond to any queries the User Interfaces may have about nodes on the system.  Through the use of “select” statements, the User Interfaces can find virtually any piece of information about any nodes on the network, sorted or filtered by any criteria the server keeps data on.  Execution of a given node’s function is accomplished by the Interface sending an “insert” statement to the database server in a special table designed for this process.  The Device Server monitors this table and when it notices a new entry it tries to execute the function via whatever method is controlling that device (the current Device Server understands only UPnP).  When the function is successfully executed the associated entry in the SQL table is removed, thus maintaining an accurate list of pending commands.
Limitations and Potential Areas for Improvement
The UPnP protocol, while enormously capable, is admittedly far too complex for use in small devices.  In the case of say, a light bulb, it is the equivalent of using one’s full strength with a sledgehammer to accomplish what a gentle tap with a smaller hammer could do.  It may be necessary to develop a much simpler communication protocol that does not even require a full TCP/IP implementation.  Or it may be more prudent to use a UPnP “wrapper” program to control a large number of light bulbs and generate UPnP signals for them.  A third solution could be to permit the simultaneous operation of more than one Device Server (using only one SQL database), and have dedicated Device Servers that could manage these smaller devices.  All three solutions are simultaneously implementable, though of these three there is not necessarily a “right” solution that covers every possible situation.
Another failing of Universal Plug ‘n Play is that it has only one commercially available device at present, the Layer 3 Forwarding Device (more briefly known as a “router”).  This has been the status since 1999, so it is not expected that there will be new devices any time soon.  More generally, it is unknown how well this protocol will take hold in the household consumer device market, so it is an assumption of the Universal Device Interface group that we will most likely have to write our own code and engineer communications into Devices we use.  There are a number of recently proposed device standards, such as specifications for a “Media Presentation Device,” that would make it possible for UPnP televisions and possibly other home theater equipment to emerge in the market.  Whether new devices will implement these standards remains to be seen.
Status of Existing Implementations of the “Device Server” Model
The Universal Device Interface group is currently in development of a Device Server as described above.  The existing version is written in C and is compiled and run in a Linux environment.  The server makes use of the Intel UPnP SDK for Linux to vastly simplify programming.  The current Device Server uses MySQL to handle the database chores, though it could be quickly modified to use PostgreSQL.  The status of this program is very early alpha, as it cannot currently provide all the functionality described by this document.  The Device Server can fully recognize Devices on the network as described and insert and remove them properly from the database, however the sub-properties of a Device, such as its functions and variables are not yet fully and correctly handled.  Furthermore, the mechanism to receive commands from Interfaces is not yet finalized, as the requirements for the SQL table facilitating this communication have not been fully established.  It is the hope of the Universal Device Interface group that a full reference device server will be completed by the conclusion of our project.
Status of Other Elements of the Universal Device Interface Implementation
As said above, the Universal Device Interface device control paradigm consists of three components: Devices, one or more Device Servers, and Interfaces.  While the above section discussed the Universal Device Interface UPnP Device Server and its status, this section will discuss other technical areas that the Universal Device Interface project has worked on.  On the device side, a driver has been completed to control a series of lights over a serial port, and to provide this functionality over UPnP.  On the Interface side, several sample interfaces have been partially completed.  A command-line tool, written in Perl, has been developed as a proof-of-concept, to show the level of abstraction above SQL (the representation the server uses to store device information).  This script takes in commands like “list” and “describe,” and performs searches in the SQL database and returns the results, formatted appropriately for human and machine readability.  Device controlling functionality will soon also be implemented.
A PHP web interface has also been partially developed.  The goal of this interface was to demonstrate the “graph” nature of the layout of the nodes.  By giving the form a “nodeID,” the page will search the SQL database and display a description for that node.  The power of using the web-based solution, though, is that links to other devices can be provided as HTML links, so that traversing the graph is a simple matter of clicking a mouse.  Command functionality is being added, and should be the first interface to successfully implement this functionality once the device server supports it.
Overview
The Universal Device Interface device control framework is more than theory: it is here today.  There are functional code examples demonstrating the power of the three-layered Device/Server/Interface control model.  UPnP lights, a sample simulated software UPnP television provided by Intel, and Layer 3 forwarding devices in the market today are all functional devices that have been tested with the system.  The Universal Device Interface UPnP Device Server is a functional Device Server for controlling UPnP devices, tested and ready for use in describing UPnP devices that dynamically appear and disappear on a network.  Finally, the command-line interface, the PHP web interface, and an upcoming flash interface are all feasible means of controlling the system.  With a little work to the existing code and the adoption of UPnP-ready devices, this system could feasibly control a whole home.
7.2.3. Graphical User Interface Implementation

We created our graphical interface in response to the goals identified through the first user study.  We chose to implement it as a JAVA application to allow for cross-platform compatibility and easy integration with future control devices (like a touchscreen, for example).  We chose to focus on three major features for the first stage of prototype design: navigation, device organization, and scripting/scheduling tasks.

Navigation
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We provide the user with two ways of navigating devices.  The first method is illustrated in the figure below. It uses a hierarchical data visualization program called SpaceTree, which is a dynamic system that allows the user to minimize the groups that he or she is not interested in and focus on one or more groups of interest simultaneously.  One of its strength compared to a folder-like hierarchy explorer is that there is no scrolling involved since the SpaceTree layout automatically expands and zooms out to incorporate large data sets.  

The second method of navigating devices is through a more traditional folder-like hierarchy explorer illustrated in the next section.  While not particularly exciting, this method has the desirable feature of being familiar to users, thus improving the over-all learning curve of using our system for the first few times.

Device Organization
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One of the features of our interface is that the user can arbitrarily group devices for convenience and navigation purposes.  The same device can be listed in multiple groups.  For example a user may have a group called living room containing the TV device and also a group called media center, listing the same TV.  The organization feedback is given in the form of a folder-like hierarchy of the second navigation method.  To see the new organization in the SpaceTree structure, the user must return to the navigation page.

Scripting and Scheduling Tasks
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In order to support the needs of both the primary and secondary users, we created a scripting wizard to take the user step by step through the stages of creating a new script.  As an example, you can see the steps involved in creating a recurring scheduled task below.  

The first step to creating a script is selecting the triggers that will cause it to run.  A trigger can consist of a device characteristic (for example, the TV being on or the over preheating to 350() or a time event, like a certain time on a certain day.  Once you specify one trigger, you can add additional triggers and specify their relationship to each other using AND and OR conjunctions.
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Since this is a scheduled event, we selected the “Set Time” option.  A dialogue appears that allows the user to set an exact time and date of the trigger.  Since we want this scheduled event to recur, we will specify a time, select “Recurring Event” radio button, and click “Done.”

[image: image6.wmf]The next step is specifying exactly how and when the event will recur.  The user has the option of having the event occur every day at the same time, only on certain days of the week, only on certain days of the month, or once a year.

[image: image7.jpg]> MEX]

X

Set Recurrence

 Daily.
) Weekly
[/Sun [IMon [ Tue [ Wed [ Thu [IFri []Sat
) Monthly.
Onthe [T of every month
) Yearly

Cancel | [ Dome |




Now the user has to select what events will occur when the trigger conditions hold true.  Here the user can select from any function of any device and specify a target value if necessary (for example, telling the system to dim the lights to 50%).  The user can add as many events as he or she wants.
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happen immediately or if you want to activate the script later.  An example of a case where you may want to delay activating the script is if you created a set of events that will warm the Thanksgiving dinner, but you do not want to start it until your aunt arrives to help you set the table.

Overview


The interface we have created allows the user to manage the multiple devices in his or her home.  Through user-defined device groups, the user can organize and easily find one specific device or group from a hundred or more.  We allow the user to navigate devices through the familiar interface of a folder hierarchy or through the innovative SpaceTree explorer.   Finally, we have provided support for creating and executing scripts and scheduled tasks.  Our system lets devices communicate through a central server – since each device can now “know” what another device is doing, the user can coordinate the actions of devices and switch modes by combining clusters of common tasks into scripts and schedules.

7.3. User Study 2: Evaluating Interface Usability

We interviewed 6 potential users of our product.  By analyzing the preliminary surveys of each user, we discovered that 3 of the users were classified as primary and 3 as secondary.  As in the first study, the mean age of these users was 29 years old.   Two of the users interviewed currently own a house, and the rest reported that they are planning to own a house by 2010.  Once again, the study was conducted in the user’s home or office to provide a comfortable and familiar environment.  The purpose of this study was to answer the question of how our system meets or does not meet the user goals identified in the first user study.

7.3.1. Task Performance

We found that there were no differences between the primary and secondary users in navigation and organization tasks.  Both sets of users performed every task correctly and there was no real time difference between users (the overall range was only 6 seconds).  One of the secondary users seemed a confused by the fact that the same device could belong to more than one group at the same time, but was also worried that deleting a group causes the devices within to be deleted (he discussed these concerns with us during the debriefing).  This caused him to hesitate when performing the second organization task; however, he was able to right himself without intervention from the experimenter.

There was more difference with scripting tasks.  Primary users performed scripting tasks 14 seconds faster on average than secondary users. Secondary users also seemed to hesitate more when going through the wizard to create the new script.  Whereas the primary users tended to do something immediately and then backtrack if they were wrong, secondary users took their time reading every direction of each wizard page and never backtracked to past steps.  One of the problems we discovered was that only two users (both of whom were classified as primary) were able to complete the following scripting task correctly: “When you turn off the light or when it’s 1 am on a weeknight, turn off the CD player and the TV.”  Those who did it incorrectly were surprised when we told them in the debriefing that they made a mistake.  All four of these users selected the AND clause instead of the OR clause for the event trigger when creating the script. Both the users that were able to complete the task reported having some experience with computer programming.
7.3.2. Usability Ratings

After completing the tasks, users were asked to respond to two statements with ratings from 1 (disagree) to 9 (agree).   For the statement, “this program is easy to use,” the average rating was 6.83 with a standard deviation of 0.75.  For the statement, “This system is flexible enough to meet my needs,” the average rating was 7 with a standard deviation of 1.41.

When breaking down the results by user types, it can be seen that the primary user rated the flexibility higher than average and the secondary user rated the ease of use higher than average.  The secondary user found the system easier to user than average.

	
	Ease of Use
	Flexibility

	Primary
	6.67
	8.00

	Secondary
	7.00
	6.00


However, one cautionary detail in interpreting these results is that our sample size was so small that hypothesis testing was impossible.  As such, these attributes of the data could have resulted by chance.

7.3.3. Phenomenological Data

The post-task interview and debriefing yielded a wealth of subjective phenomenological data about how the user reacted to our interface.  We asked each participant whether he or she would use our system in their home and how he or she would use it.  Two of the primary users responded that they would definitely use the system in their home if it were available.  One of them suggested that one possible application of a common interface between devices would be to allow all the media devices to connect to a common file server and share access to media files.  The other suggested that she would like to set up her computer to open the appropriate page for a movie in the IMDB online database as soon as she puts the disc in the DVD player.  The remaining primary user and one of the secondary users said that they would use the system if it were very affordable and easy to maintain (i.e. no need for professional installation or service).  Both of these users said that they would probably use the system for tasks similar to those in our study, especially tasks to make mornings more efficient and the media theater a more integrated suite.  The last two secondary users said that they probably would not end up using the system unless somebody installed it and maintained it for them.  One of them stated: “I’d like to become more efficient by using something like this, but I’m way too lazy.  I’d rather walk over to the TV and push a button than learn how to do the same task through the system.”  The other said: “What you guys have done here is great, but I’m too old to learn new tricks.”

Next we asked if the participants had any comments to make to improve the product or if there was anything that they particularly liked about the interface.  All three of the secondary and one of the primary users explicitly mentioned something positive about the SpaceTree hierarchy explorer and thought that it should be the default method of device navigation.  The primary user also suggested that we develop something similar to replace the folder-hierarchy used on the device organization page.  There were a lot of comments about the scripting wizard.  Two primary and two secondary users suggested that we develop a more visual way of creating scripts or representing finished parts of the script during the creation process.  One of the primary users also wanted more options in creating scripts, like the ability to reuse scripts he may have written in the past.

7.3.4. Interface Evaluation

One of the strengths of our program was that the primary user found the system to be flexible enough to meet his or her needs.  This is important since our first user study identified flexibility and control to be important things that the primary user desired.  Another strength is that every user was able to complete all tasks except for one scripting task correctly without guidance from the experimenter.  More than half of the users stated that they would be willing to use our system in their home, and some were willing to provide new creative uses for the system.  In general, primary users experienced less trouble with the various tasks and showed more enthusiasm towards the program, which shows that our efforts at targeting this group of users were successful.

The one task that proved troublesome for the users involved compound Boolean statements.  This difficulty with compound triggers is one of the weaknesses of the program.  Another weakness is that the device organization tasks took longer than expected because some users did not seem to realize that a device could belong to more than one group.  We discovered that we needed to provide better support for secondary users who seemed to be most prone to experiencing these problems.

Overall, our system meets the needs of the user, however there are several areas for improvement.  This is expected since product design is an iterative process.  Future directions for improving the interface garnered from this study are enumerated in the next section.

8. DISCUSSION

8.1. Future Directions

8.1.1. Hardware Development

There are many technological improvements which could go into the SpiffyNet platform, and foremost on that list is wireless support.  Universal Device Interface spent significant time examining the Bluetooth (“Bluetooth Wireless”, 2005), Z-Wave (“Z-Wave”, 2005) and ZigBee (“ZigBee Alliance,” 2005) standards, but there were no viable development platforms available at the time on a student budget.  In Jaunuary of 2005, Chipcon bought Figure 8 Wireless (Bindra, 2005), one of the leading ZigBee software stack developers and has begun releasing Figure 8's Z-Tools development platform to its customers.  This is the first real promise of an affordable standard compliant wireless system, one which would be both low cost enough to integrate into the house and affordable enough to assure future proofing.  One of the other main advantages of the ZigBee platform is that its low powered; this opens the door to new possibilities: integrating the remote control as a node itself, controlling your MP3 player with the system, &c.

Beyond wireless support, the other main tasks are continued work on device development tools and building a bigger device library.  Being able to build nodes by dragging and dropping individual devices has powerful potential, both for simplifying development effort and for allowing automated interface generation.  Lastly, more device templates are needed.  Current the only devices available are lights, on off switches, and buttons.

8.1.2. Graphical User Interface Development

There are some features that are not implemented by our system, but yet would be beneficial.  One of these features is an extensive context-specific help system that will allow the user to get help specific to his or her current state.  For example, a user who is not sure how to create a trigger will not have to open the help menu and search for the word trigger, but will rather have several options through the use of tool tips and hotbuttons throughout the system to get help based on the page that he or she is currently visiting.

Another feature that should be implemented is support for multiple users.  Since this system will be installed in a home environment, it is important for the administrator of the system to be able to define new users and set specific permissions for those users.  The best example of this would be a parent creating user profiles for the children that will allow access to some devices but not others.  This also allows parents to create a safer environment by only allowing children access to pre-written scripts rather than specific devices.  For example, a mother that wants her child to use the microwave to cook an after school snack may worry that the young child would not set the correct time.  Thus, instead of giving the child direct access to the microwave, she can set permission to a script that she previously wrote that passes the correct parameters to the microwave.  There are also other applications of user creation that would allow parents to control the activities of their children.  One example may be that a parent makes it impossible for a child to turn on the television until after 5 PM (when he or she would hopefully be done with homework).  Another application is creating a guest user with a number of predefined scripts and functions that would allow a guest to be able to interact with unfamiliar devices with much more ease.  For example, many people have trouble figuring out how to use their friend’s VCR on the fly.  Our system would allow for this process to be simplified considerably.

8.1.3. Usability Testing

The major limitation of our usability study is that because of the really small sample size, we could not conduct hypothesis testing about differences between users.  The sample size was too small too assume a normal distribution.  Another limitation is that we tested many different component of the system, so the task set for each specific component has to be pretty limited.  The study still provides meaningful information about the interface, however its main role is as a pilot study to direct future design and identify features for more exhaustive task testing in the future.

This pilot study should eventually lead to conducting another user study with a large enough sample size to do hypothesis testing, focusing on scripting and scheduling tasks.  This future study should examine what differences exist between the varied types of users in terms of time taken to complete a scripting task, correctness of the solution, and subjective satisfaction using the interface.  Subjective satisfaction should be measured with a validated scale that examines more dimensions, like the Questionnaire for User Interaction Satisfaction (Q.U.I.S.).  The results of this pilot study should be used to formulate hypotheses and as a basis for power analysis for the new study.  Another possibility for a future study would be independently examining the way users approach Boolean sentences and determining the clearest way to present them by comparing multiple methods including Venn Diagrams, various flow charts, and redundant feedback methods.  Additionally, as we implement additional features of the interface, like multiple user support, we need to conduct other pilot studies to identify possible problems in the new areas.  The iterative design cycle of implementation and testing should continue until the final product is as close as realistically possible to the desired result.  When done adding and testing specific features of the system, our system should be tested against a well-established system in the field for equivalent common tasks.  This process would yield information about which system works best for which specific tasks (as operationalized by the time it takes to complete each tasks and correctness of the solution).  This information is necessary for the end-user to decide whether the benefits of adopting our system outweigh the costs.  Finally, once the system is released on the market, we should create logging features that allow us to identify any post-release bugs, as well as study in more detail the way real people use (or do not use) the system.  Logging could provide real user data that avoids the bias that is introduced simply by the act of observing the user.  Data garnered from logging could then be used to create future iterations of the Universal Device Interface that focus more on tasks that users complete more often and try to understand and simplify complex tasks that users seem hesitant to execute.

8.2. Secure Device Networks in the Home Environment

One of the most frequented issues when discussing the home computing environment and automated devices is security.  Whether it is a fear of malicious hackers or deranged appliances running amok, the issue of automating everything in your home is invariably met with the question of just how wrong things will go.  

8.2.1. Security by Design

Computers do not have the best reputation for reliability or security.  For the most part, computers and their applications are built to be monolithic.  They are not designed to interact with other systems, thus by assuming isolation they are vulnerable to exploitation.  There is no procedure for dealing with exceptions because applications are built to never do anything exceptional.  User’s stay within the tracks laid out by the application, until they break or are infected by viruses and hackers.

In a true home computing environment, the various pieces fully expect to be operating and communicating with other systems.  No longer can each system presume to work in isolation, they are now part of a networked system, independently tasked with behaving as a network citizen.  Even if every other device on the network is running amok, the expectation is that this device will remain calm, stable, and will politely deny any inappropriate requests.  Whereas before the goal of the application is to prevent the user from doing inappropriate things, the goal of a networked appliance is to make a best effort attempt at doing the indicated task, and signaling failure should the task prove impossible or unsafe.  Faults are an accepted and regular condition – one that appliances are built to respond to.

This incidental security by design revolves around appliances knowing and sticking to sane operating procedures.  Doors must refuse to close when there are people in them.  Sound systems should ramp up the volume, not immediately flip to full volume.  Ovens should not be capable of leaking gas and toasters should not remain on indefinitely.  The intelligent device must know its world well enough to know what not to do, just as our contemporary dumb devices are designed not to do certain idiotic things.  These predicated systems depend on having their own secured understanding of their environment that they use to determine their own operation.  

Each device constitutes a small piece, and these pieces are loosely bound together to form the home computing network.  Small pieces, loosely joined allows for the network sentience to prevent a cascade of drastically stupid computer actions.  The tacit expectation of resilience, self sufficiency and sane operating procedures are sufficient to make sure a device operate at no higher a threat level than an un-wired counterpart.

Contrasted with the contemporary application, this technique is downright secure.  A conventional application is a massive beast with a thin layer of user interface as armor to keep the user from performing unscripted actions.  Testers spend entire man-years making sure users can’t get past this thin veil, insuring that the complex machinery behind the scenes is all ticking in perfect unison.  The application is a heavily governed tightly-nit system with countless subsystems cross connected across mazes of internal dependencies.  Applications don’t rely on being able to deal with faults in this scheme, but rather focus entirely on attempting to prevent these faults from ever happening.  With malicious users and programs on a network, this becomes a non-trivial task.

Normal Accidents by Charles Perrow is the original 1984 text that describes failure of heavily interdependent systems.  The systems which fail the most catastrophically are the ones which are tightly interwoven, simply because any injected error or abnormality is continued down the pipeline and potentially magnified at each stage.  Perrow observes that these systems tend to break down violently when placed under strain, whereas open systems have the flexibility and noise tolerance to chug on under load.  This fault tolerant characteristic is instrumental to maintaining a home network under hostile conditions, it insures that when your TV fails, your doors do not lock and your lights do not turn off automatically.  The great security of the system comes from the fact that it is independent pieces with accepted contracts for talking with each other.  Any communication outside of agreed-upon contract can be disregarded.

8.2.2. Potential for Malicious Attacks on the System

Moving into the realm of malicious users, our system provides the greatest level of support that can be expected.  Network security is the only component in the whole system which not only does not need an interface, it is the only component which is not allowed to have an interface.  Insecurity through misconfiguration is not an acceptable outcome when dealing with the home environment.  On our system, security is always “turned on” and cannot be “turned off.”  Our solution involves placing the home network behind a secure firewall onto a cryptographically secure network.  Low cost consumer grade computer hardware is already available to do this, but adding the cryptographic systems to appliances would add to cost.  These costs are unavoidable for wireless systems, but many new wireless controller systems provide built in wireless, reducing cost impact.  One way that are system is different from others is that rather than expecting the user to purchase and install such a system, this system will be a built-in and inherent feature of our network.

The biggest weakness in the chain is the desktop computer, the ones many people will be using to do higher-level manipulations of their home environment.  Once infested the desktop becomes staging grounds for assaults against the home network.  This was one of the primary influences for designing all components of the Universal Device Interface team’s systems to operate under Linux: it is vital that the underlying system controlling the network not be susceptible to infection.  This provides a solid platform to securely authenticate users, including desktop users running other potentially insecure platforms, as well as provide grounds for revoking privileges if security is compromised.

8.3. System Costs

One of the goals of the Universal Device Interface team is to create a system that is affordable, in addition to infinitely expandable and easy to use.  Although home automation systems are currently on the market, they are not highly utilized due to issues of cost and ease of use and implementation.  As a result, the technology that is currently available to incorporate the appliances and devices into an automated network is insufficient to meet the demands and needs of the public.  The goal of the UDI team is to address this exact problem. 

Other systems that are currently available include X-10, Mastervoices’s Butler in a Box, and Multimedia Max.  X-10, as mentioned previously, is currently the best known commercially successful home device networking system.  However, this system is restricted to controlling a limited number of appliances, mainly lights.  The cost of the different pieces of the system varies, but the main drawback is that they all come separately as individual devices or modules that can handle a limited number of appliances.  For example, a remote controller priced at $22.86 controls up to 8 devices or appliances and a palm pad home control kit priced at $19.99 controls up to 16 lights or appliances.  (X-10)  The number of appliances that can be controlled by a single interface is finite and therefore more devices or modules have to be bought in order to incorporate all the devices in the household into a home automation system.

Mastervoice’s Butler in a Box is a voice automated environmental control unit.  It is a voice-automated system that can control up to 32 devices by voice and 256 devices by touch.  However, only 2 people may be able to utilize the system via voice commands.  The suggested retail price of the standard Butler in a Box is $2995.00.  This system is said to be able to control all appliances, lights, and telephones in the household, but the accessories that are sold in addition to the system are things such as a thermostat control unit for $250.00 and an owner/user manual for $35.00. (Mastervoice)  Also, in addition to the main control unit, modules, transmitters, remote controllers, microphones, and other extraneous accessories are sold to supplement it.  This can get quite expensive and again the system is not infinitely expandable.

Multimedia Max is another voice controlled home automation system, but it is integrated into a computer system.  The full system is priced at $8995.00, but the price includes a fully loaded Intel Pentium 4 2.8 GHz computer with a 17”flat panel monitor.  Again, this system maxes out at 256 different lights and electrical appliances.  (Multimedia Designs)  This product is focused primarily at aiding disabled individuals lead a more independent lifestyle.  In addition to the hefty price tag, this system requires an installer and training.   

The cost and requirements of the Universal Device Interface would make it attractive in the eyes of a consumer looking for a home automation system.  Our estimated costs for retrofitting an appliance that is already electronic would be about $3 and the cost of retrofitting an appliance that is not very electronic, meaning the appliance does not have built in electronic, such as a toaster would be about $8-$9.  These would be the manufacturer’s cost.  The expense to the consumer would be approximately $25 for a board that would support about 16 appliances.  This would be for those individuals who want to jury-rig their existing appliances on their own.  The average consumer would be able to purchase appliances with the required material already installed in it and incorporate it into the main system, which is based around the centralized device server just by plugging it into an outlet.  No programming or set up would be required.  The program could be run off of any computer therefore a new one is not required.  The only thing that might have to be purchased to run the Universal Device Interface would be the software, which is based around an existing standard and therefore would not be costly.

The idea of an inexpensive easy to implement home automation system is clearly within grasp.  The Universal Device Interface is a comparatively inexpensive way to network the appliances in the home into a single device server.  Implementation requires the consumer to either buy appliances that are compatible with the system or purchase boards that could support up to 16 appliances and jury-rig pre-existing appliances to become compatible with the system.  

8.4. What Makes Our System Different


Universal Device Interface is, of course, not the only project aiming to give users this type of control.  Other projects range from commercial applications such as X-10, to full-scale smart home research facilities at major universities.  However, there are a number of aspects of the Universal Device Interface, arising from the unique goals of this project that are truly novel.


The key feature of the UDI system is that the devices describe themselves to a centralized computer.  This information is used to generate interfaces for the user to control them.  This feature leads to two key unique properties of the universal device interface.  The first is that because all information about a device is contained within it, and it describes its own features to the system, the Universal Device Interface is infinitely expandable.  Even devices that have not yet been invented will be capable of describing their functions to the central database and being controlled by it.  The second property that emerges is communication and coordination between devices.  The server may be told to operate a group of devices in conjunction (for instance, by always turning on all of the lights in a given room at the same time) and devices can query the server for the status of other devices and change the way they operate accordingly (for example, upon being turned on, the TV may ask if any of its peripherals, such as a DVD player, are also on and automatically switch modes to accept that input).


Another major unique feature of Universal Device Interface is its interface.  This single interface allows all devices in the home to be equally simple to use – the interface will look nearly identical for all devices.  Further, interfaces may be switched in and out of the system just as easily as devices may be plugged in or unplugged.  This allows the user to choose an interface that matches his or her preferences for the desired type of control or ease of use.  Finally, the interface that we have designed is the result of iterative user-centered design, allowing the interface to conform not to the demands of the devices and the server, but to those of the user.  The end result is greatly increased ease of use and control.


As a subset of the interface, the scripting interface is a particularly unique feature.  Scripting interfaces designed for the average, not particularly computer-savvy, user have previously been very rare or non-existent.  The system we have implemented as a part of our interface allows the average user to create simple or complicated scripts in a way that is logical and straightforward.  The ability of the device server to accept such scripts greatly enhances its capabilities with respect to device communication and allows very complicated commands to be issued in a simple manner.


Another strength of the Universal Device Interface is the modularity of its parts.  Such an arrangement allows for improvements to the system without a complete overhaul.  For example, an entirely new and improved device server could be created and dropped into place without any change to the devices, because the only connection between the two occurs through simple communication via Universal Plug ‘n Play.  Likewise, if communication standards change due to improvement or replacement, the devices and server will only need to be upgraded in terms of their communication, which is a separate function from their other “inner workings.”


As can be seen from these unique characteristics of the Universal Device Interface, the possibilities of such a system are endless.  The ability to finally improve our control over our devices, while simultaneously increasing their ease of use, has become a realistic possibility.
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10. APPENDICES

Appendix A. User Study 1 Interview Moderator’s Guide

OPENING COMMENTS AND INTRODUCTION (10 min.)

· Welcome and thank participants for coming

· Introduce yourself and any observers that may be present

· Add that you are from the Gemstone undergraduate research program at the University of Maryland

· Explain the purpose of the interview and describe the interview process

· Ex: “We are trying to develop technology that will make it easier to interact and control devices and appliances you may have in your home. In order to better understand how to create this technology, we are interviewing potential users from many different walks of life.  The information we get from this interview will be used to make sure that our product better meets the needs of users like you.” 

· Give the participant two copies of the consent form

· Ask him or her to read and sign one of the forms and keep the other

· Ask the participant if he or she has any questions about the study

DEMOGRAPHICS AND BACKGROUND (15 min)

· “We would like to start with a few questions about your background with technology.”

· Ask some questions from each category.  The goal is to have the participant open up and tell stories and anecdotes from their life.  Encourage the participants by asking for examples, reasons, or giving follow-up questions when warranted.

· How comfortable would you say you are with technology and computers?  Do you often use a computer at home or at work?  Do you find that new technology often serves to make your life harder or to simplify it?  How so?

· Tell me about your day.  What devices or appliances do you use most often?

· What do you do when a device isn’t working right or isn’t doing what you expect it to do?  Can you give us some examples?

HOME THEATER INTERACTION (15 min)

· “Now, we would like to ask you some questions about how you interact with the media devices in your home, this includes your television, stereo, DVD-player, or any other such devices.  From now on we will refer to all of these collectively as your ‘home theater system.’”

· What sort of devices do you have in your home theater system?  Include any game consoles, speakers, cable boxes, etc.  How many remotes do you have?  How often do you use you home theater system to watch the television, play games, or listen to music?

· Do you ever have trouble using any of the devices or getting them to function, as you want?  For example, do you have trouble programming the correct time on your VCR?  What would you say is the device that is hardest to use?

· Do any features of devices in your home theater system drive you crazy? Are there any things you would really want to change?  If the participant is really having trouble coming up with something, give a few examples and see where that takes them.  For example, do you have trouble remembering where you put the remote?  Can you program your VCR to record a show at a preset time?

· Do you ever have trouble switching between different modes on the system? For example, switching from watching a video to watching a news show, or switching the TV to play a game?  Would you say that the different devices that make up your home theater system work together well or do you wish that some things were better integrated?  Give examples.

· Think about your home theater system in the larger context of your home.  Is there anything that would make using the home theater system a more pleasurable experience?  Is there anything that would allow it to better integrate into your home?  If the user seems confused give some examples.  For example, what if the lights and the window shades could automatically be set to dim the lights when you sit down to watch a movie?  Or, what if the phone automatically switched the ringer off, going straight to answering machine, when you are playing a video game?

WRAP UP AND CLOSING (5 min)

· Ask if the participant has any final questions or comments

· Thank the participant for their time and ask them if they would be interested in taking part in any future studies on the topic that the team may conduct

Total planned time: 45 minutes

Appendix B. User Study 2 Interview Moderator’s Guide

OPENING COMMENTS AND INTRODUCTION (10 min.)

· Welcome and thank participants for coming

· Introduce yourself and any observers that may be present

· Add that you are from the Gemstone undergraduate research program at the University of Maryland

· Explain the purpose of the interview and describe the interview process

· Ex: “We are trying to develop technology that will make it easier to interact and control devices and appliances you may have in your home. We have created a prototype that helps the user accomplish many everyday tasks.  We are going to ask you to perform a few example tasks using the computer while we observe. Keep in mind that we are evaluating the effectiveness of the interface, not you.  So if you have any problems or suggestions, be sure to let us know, as it will help us improve the next version of the interface.” 

· Give the participant two copies of the consent form

· Instruct him or her to read and sign one of the forms

· Tell the participant to keep the other form for his or her records

· Ask the participant if he or she has any questions about the study

BACKGROUND (10 min)

· “Since our system is supposed to help you work with the media devices in your home (like television, stereo, DVD-player, or any such devices that we refer to collectively as your ‘home theater system.’), we want to ask you a few questions about your current interactions with such devices.”

· What sort of devices do you have in your home theater system?  Include any game consoles, speakers, cable boxes, etc.  How many remotes do you have?  How often do you use you home theater system to watch the television, play games, or listen to music?

· Do you ever have trouble using any of the devices or getting them to function, as you want?  For example, do you have trouble programming the correct time on your VCR?  What would you say is the device that is hardest to use?

INTRODUCE TASKS (1 min)

· “We are now going to present you with 5 everyday tasks that a user may try to complete with our interface.  Please use the computer to carry out each task.  We would like you to “think aloud” while you are working.  For example, tell us why you are selecting a particular option or button, if you think you have made a mistake, or if you find something confusing. Be sure to tell the observer when you think you have completed the task or if you are stuck and cannot proceed any further.”

· Select a task and present it to the participant.  Observe the user while he or she completes it.  Try to keep the participant thinking aloud by asking questions, but do not offer any specific help.  If the user seems stuck for a long period of time or seems to be getting frustrated, aid them by either offering a hint, suggesting that they start over, or moving on to the next task.  In any case, you should note how far the participant got, where he or she got stuck, and how he or she tried to get back on track.  Continue presenting the user with the next tasks.

· Record the time required for the participant to complete the tasks and report any errors or obstacles encountered by the user.

TASKS (~2 min per task)

· Device Navigation Tasks

· Task 1: Select the TV in your living room.

· Task 2: Select the alarm clock in the bedroom.

· Organization Tasks

· Task 1: Create a new device group called “Morning” containing all devices you might use in the morning.

· Task 2: Your house is getting remodeled and you want to move all devices from the living room to a new room called “Den.”

· Scripting Tasks

· Task 1: Create a script that will turn off you lights whenever you push play on the DVD player.

· Task 2: You get back from work at 6 PM. Create a new script that will turn on the lights and play the current song in the CD player at 5:59 PM every weekday

· Task 3: When you turn off the lights or it’s 1 AM on a weeknight, turn off the TV and play the current song in the CD player.

SURVEY AND DEBRIEFING (10 min)

· Ask the user to fill out the brief survey on ease-of-use and flexibility of tasks

· Debrief the participant by asking him or her which tasks they found to be the hardest or the most frustrating and asking for ideas to improve the interface.

WRAP UP AND CLOSING (5 min)

· Ask if the participant has any final questions or comments

· Thank the participant for their time and ask them if they would be interested in taking part in any future studies on the topic that the team may conduct

Total planned time: 1 hour

Appendix C. Use Cases

This section will examine a number of sample use cases for the home computing environment.  These are tasks that users want to be able to achieve, as garnered from user interviews and phenomenological research, that are currently impossible or very difficult to complete.

New Lighting

Jackson adds a new lamp to the corner of the room that he really likes, but finds it difficult to get it to switch on and off.  Jackson wants another means to control it.  Existing systems like X-10 provide ways for Jackson to control the light, but figuring out how to integrate this hypothetical level of control with a real world implementation is trickier.  Jackson could tie the light to act the same as another X-10 based light in the room, or he could add an extra X-10 wall switch.  He could buy a simple X-10 remote control for the light.  Jackson has a number of options available, and can hopefully find a satisfactory one for him.

Morning Coffee

Jiminy wants his coffee maker and toaster to go on automatically in the morning to have breakfast ready for him.  Through systems like X-10, it’s possible to have an appliance turn on at a designated time, but Jiminy just has to remember to set the coffee maker up at night before he goes to bed, otherwise the coffee machine could burn the pot.  The coffee maker has no ability to report back its status.  Jiminy has no convenient way to inform the network whether he’s set up the coffee pot, short of turning the script on and off manually.  So although this use case is fulfillable, it comes with compromises.

To extrapolate better control, the coffee machine needs some way of reporting its status.  Status conditions like “ready to go,” “brewing,” “heating brewed coffee,” and “out of use,” would let the automation system decide the appropriate course of action.  It could remind Jiminy that his coffee maker isn’t setup before he goes to bed, and could skip turning it on in the morning if it’s not set up.

Home Theater

Jasper wants integrated control over a home theater, including control over the theater lighting. There are quite a few means for control that Jasper can choose between.  He could get a universal touchscreen remote and fancy remote control off-the-shelf lighting system.  He could get a home theater computer and set up a digital hub system that orchestrated all of his home theater components, but that would require him to integrate separate home automation software as well to exact control over the lighting.

Mode / Mood Settings

Jeremy wants mode switches to change lighting and playlists to preset configurations. Again the problem with Jeremy’s use case is that he’s trying to join together disparate systems.  Unless he wants to have to use the computer to change modes, he’ll have to base the system on a home automation standard, and craft a custom control mechanism over his music system to get it to switch playlists with the mood.  Plug-ins exist for many home automation systems to integrate somewhat with the Windows Media Center XP digital hub, but exacting this level of scriptability is non-trivial.

Alarm Clock

Josephine falls back asleep without light, and wants to have her light system linked to her alarm clock. This is feasible with current automation standards to some degree, however it means abandoning a conventional alarm clock altogether.  Josephine would have to replace her alarm clock with a computer script to exact similar functionality without the same physical alarm clock device.  Figuring out how to replicate functionality like sleep and snooze would be difficult but far from insurmountable.  She could purchase a touchscreen which could emulate an alarm clock device with the proper software, but she still wouldn’t have an actual alarm clock she could toss across the room early Saturday morning.  The solution to this problem is very similar to the Morning Coffee problem.  The alarm clock needs to be a networked device, capable of communicating with the rest of the system, capable of reporting its status and responding to events from other devices.  This would make it exceedingly simple to link the alarm clock to another device like a light.

Secondary Control

Jojo bought a universal remote but looses it incessantly.  Jojo wants a secondary way to control her system. With Media Center XP, Jojo could always go to her computer and manually change settings.  With a home automation setup, Jojo can add fixed touch panels which she can’t lose.  Both of these solutions provide secondary levels for control.  

However, each system has a finite set of interfaces available for the user.  When a new interface is developed, the user is at the mercy of their system manufacturer to provide a new interface, and only limited options are available. 

Consistent Music 

Jason wants to be able to have his playlist and current song follow him, from his computer to his sound system, to his car, to his portable media player. This usage case is simply not possible in current systems.  A couple cars have custom logic to allow a user to save and restart their position in DVD’s, transferring this information to a custom DVD player in the home which can read this same information.  The next closest case is the iPod which has a variety of ways of interfacing with cars and stereo systems, but this dodges the conceptual bullet of transferring playlist information between systems. To overcome this, a complete reform of device interactions is necessary.  There is currently nothing remotely capable of providing this level of functionality.

Changing Rooms

Josh is playing around in media room when his sister shows up with friends and commandeers the room.  Josh wishes to move to his own room and have his “electronic context” follow him.  His current music, his documents, his games and programs should follow him into the other room. This deep functionality hints at what is really behind the pervasive wave.  The devices that a user is using are irrelevant compared to the tasks they are doing.  The devices themselves fade into the background, merely accessory to the task.  This so called “Task Computing” is being developed at the Fujitsu Research Labs, and they have a number of similar use cases at their web site; http://www.flacp.fujitsulabs.com/. Although our current system does not heavily address these issues, our architecture is designed to eventually integrate into a system-agnostic form.

Social Computing

Josh’s sister Jenivive and her friends are taking over the media room for an OC marathon.  Two of her friends brought laptops and are chatting online and hanging out in The OC forums.  They find some funny things they want to share and want to display just that content on the main screen without interrupting The OC. This use case goes even deeper into pervasive technology, hitting upon a yet another phenomena known as social computing.  Not only is task computing at play here, but multiple users are sharing their devices together.  Jenivive’s friend Julie could, for example, drag her chat window onto an icon on the desktop for the media center’s main display and the chat window could appear overlaying The OC.  Use cases like these are deeply complicated as the logistics of sharing meet issues of security, but ultimately the goal of the pervasive wave is to break down the technological barriers so that inter device tasks like this become trivial.

Appendix D: Historical Analysis

Changing Role of the Home

One of the most immediate and pertinent questions occurring to our team was how such an intuitively unacceptable situation came to be.  If there really was as drastic a problem in the home as we felt, why was it not more sharply identified already?  To answer this question, our team looked at the changing role of the home over the past decade to see how so many control issues could arise relatively unnoticed.

Classic Home

This section addresses the “classic” home, giving us a basis of where our current system of controls originated.  From its root, the home appliance was an inherently simple device.  Most interfaces were electro-mechanical; a knob, which winds a spring, that tells the toaster to toast for a certain amount of time.  Computer logic was too costly and error prone to be used in most interfaces, and devices remained simple enough to not warrant additional control.

This electro-mechanical simplicity conveyed a number of unique advantages.  Interface was fairly predictable; to play a record, mount the record onto the turntable and move the needle over the disc.  There wasn’t a whole lot of variety between the knob button and switch, so most appliances were fairly easy to grasp, even if you’d never seen a single product in that manufacturer’s line before.

Internet Age Growing Pains

Skip forward to the modern days, homes now have a phone line, three cellular plans, DSL, a fleet of televisions and in some cases multiple TiVo boxes.  Not only does every household have their own complete media hookup, each person in the home has their own.  

To make matters worse, devices have become increasingly complex.  Home theater has hundreds of channels, countless other input devices, a host of speaker outputs and a coffee table to hold all the remotes.  As the number of devices has increased, so has their functionality.

The New Home

The home is the hub where different users, with their disparate technologies, must meet.  Unlike businesses, there is no deployment scheme to insure compatibility.  Still, we this growth taking shape physically, with more and more the middle class home gaining dedicated home theater rooms, sometimes with intelligent lighting systems and sound distribution systems.  Wiring and automation closets used to be the staple of multi million dollar mansions, but more and more $200,000 houses are being built and retrofitted with miles of cable and conduit.  All of this is an effort to harness the array of powerful technologies available users, and to reduce the overwhelming technical complexity towards an easily digestible form.  

Existing paradigms for the Smart Home

There are a number of pre-existing characterizations of the home that exist to provide a technological infrastructure for the user.

Remote Control

The original and dominant paradigm for giving users control is the venerable remote control.  The remote control has evolved little since the original Lazy Bones remote control in 1950.  Wireless renditions were made in 1955, then latter infrared in the 1980's and radio in the 1990's, but fundamentally there has been little evolution of the remote control even as the number of device's and our device's complexities have skyrocketed.  This paradigm has not met the rising tide of new devices and new functionality, but remains the most entrenched standard.

We've masked much of our control problem away behind layer after layer of menu based and spatiotemporal systems, but the issue of control is the problematic stepchild of our media revolution.  The remote control has gone untouched, unchanged and unchallenged.  With systems like TiVo and Microsoft Windows Media Center XP, we're seeing extremely advanced functionality that somehow has to be placed within fingertip or closer reach of the user.  The remote control is no longer sufficient to provide all the control a user could ever want over their device.

Automation

A plethora of systems exist to serve the needs of home automation.  These are mostly commercial off the shelf solutions to actualize some control over devices, like X-10, an over twenty five year old standard designed for lighting and on off control of appliances, and perhaps the most entrenched standard around.  A number of systems exist to support and orchestrate control within the X-10 system, often providing mode settings which let the user switch between predefined settings.  For example, the user might have settings for day and night, movie watching and the morning.

Digital Hub

The digital hub buzzword has gained a lot of traction of late.  Touted by the consumer electronics giants and Microsoft alike as the next big thing, the digital hub is about super appliances designed to orchestrate and control other devices and appliances.  Under the name of convergence, the digital hub is supposed to be a unifying device to tie together what would normally be a number of different systems.  Microsoft's Windows Media Center XP is a fine example, placing the PC at the center of a single home theater setup to provide comprehensive functionality through a single interface.

Intelligence

Most ongoing research into smart homes focuses on granting the home some level of intelligence.  By wiring the home with embedded sensors and connecting these sensors to pattern recognition systems, researchers hope to allow the home to anticipate the needs of its occupants.

