
A Survey of Some Recent Results in Comptuer
Graphics

Robert Patro

May 19, 2006

Introduction

The field of computer graphics is moving forward at an exponential rate. Even as
GPU processing power increases at rates exceeding those predicted by Moore’s law, the
size of the datasets being acquired and rendered is increasing even faster. As a result,
much research has been done recently which deals with making these very large datasets
manageable. Work has focused on methods to help filter, view, render, and generally
process vast amounts of visual data. For example, high precision laser scanners have
brought about the rapid acquisition of very dense point cloud data sets. However, these
very acquisition methods often result in models that suffer from a degree of unwanted
noise. A “simple and fast” method to filter out such noise, yet preserve high frequency
features, was presented by Fleishman, et al.[1]. Furthermore, with such an abundance
of large models, it is necessary to develop automated methods by which they may be
optimally lit and viewed. To this end, Lee et al.[3], have created a system for automatic
light placement and silhouette edge and proximity shadow generation, which allows for
the greatest exposition of surface features and details. In a similar vein, Lee et al.[5] also
developed a new saliency metric that attempts to measure low-level perceptual signifi-
cance. This concept of mesh saliency promises to have wide applications in the field of
graphics. Finally, as a result of the realization of the increasing growth of the compute

bandwidth

ratio of GPUs (thus implying an equivalent increase in the growth of the modelsize
bandwidth

over
the modelsize

compute
ratios), a novel approach in the vein of the stream processing paradigm is

presented by Kim et al. [6]. This method allows for the factoring of large models into ver-
tex and transformation (effectively translation at this point) streams which can then be
recombined at the Vertex Processing Unit (VPU), effectively trading VPU computation
for bandwidth. Each of these methods in their own right, represent significant progress
forward in the effort to bridge the gap between the rapidly increasing size of the datasets
acquired and our ability to visualize them.

Bilateral Mesh Denoising

Current methods of automatic data acquisition have lead to very dense datasets. How-
ever, along with the ability to discern ever smaller details within a scanned object, the
problems posed by noise have grown more prominent. Because the devices used are more
sensitive than ever, they are more subject to high frequency noise that causes inaccurate
discernment of the actual underlying surface. Traditional filtering methods are effective
at removing high frequency noise, however, in the process they often remove small scale
details in the data. Filtering high-detail, dense models with traditional filters in many
cases nullifies the benefits of the higher resolution acquisition techniques. To tackle this
problem, Fieishman et al.[2003] suggest the use of a bilateral filter, a method which has
proven highly effective for feature preserving denoising in image processing. The bilat-
eral filter acts as a Gaussian filter, but introduces an extra term into the filter’s kernel to
account for differences in the intensity domain between local samples. They extend the
bilateral filter into 3-space and introduce methods to avoid the two main complications
shrinkage, and drifting.

In two dimensions, the bilateral mesh filter works on a local neighborhood of samples.
A normal Gaussian filter, acting as a convolution kernel, weights points only in accordance
with their distance from the center of the kernel, such that we can define the closeness

in the distance domain as Wc(x) = e
−x2

2σc
2 where x is the distance between two given

1

samples. The bilateral filter introduces a second term to account for the difference of
samples in the intensity domain, we can view this intensity difference term as another

Gaussian Ws(x) = e
−x2

2σs
2 , where x here is the difference in intensity between two samples.

The terms σc and σs are parameters of these equations which may be set according to
user preferences, or chosen dynamically based on the input data. The introduction of this
intensity term to the kernel allows for the removal of noise while attempting to preserve
edges and details. Fleishman et al. attempted to create a 3D analog of the 2D bilateral
filter. While the concept of distance is easily extended from 2D to 3D, an attempt must
be made to discover an analog for concept of intensity. A 2D bilateral filter, as used in
image processing, considers the difference between two samples in the intensity domain
as the difference in the gray-scale values between those two samples. Fleishman et al.
propose considering intensity in 3D as the signed distance of a sample from the tangent
plane of the mesh at the vertex which is at the kernel’s center, such that if v is the vertex
for which we are currently processing the bilateral filter and P is the plane tangent to
the mesh at v 1, then for v1 ∈ N(v) 6= v they define the intensity difference I(v)− I(v1)
as the distance from P to v1.

Intuitively, one can imagine that the distance domain term Wc(x) has the effect of
smoothing the surface while the intensity domain term Ws(x) has the effect of maintain-
ing high-frequency data which has intensity similar to that of the sample being processed.
The overall effect of applying this bilateral filter to the mesh is the removal of noise, due
to the smoothing term, and the maintenance of high-frequency detail, due to the intensity
term. Furthermore, the filter can be applied in an iterative fashion, with each iteration
attempting to remove more noise while maintaining features. Since the application of
the bilateral filter may lead to shrinking of the model, they use the exact volume preser-
vation technique presented by Desbrun et al. [1999] to scale the model after filtering.
Furthermore, the averaging effect in the distance domain can lead to a problem known
as vertex drift which may move a vertex away from its original location, and as a result
reduce the regularity of the mesh. The method presented here avoids vertex drift by only
moving the vertex v which is being processed along the direction of it’s normal, thereby
eliminating vertex drift.

While the bilateral mesh filter produces convincing results, it has some shortcomings.
The assumption is made that the data sets and meshes to be processed are regular, that
is for a mesh M , |N(v1)| ≈ |N(v2)|, ∀v1, v2 ∈ M . If neighborhoods contain too few
samples, then the bilateral filter may have ill effects, possibly eliminating features which
have been mistaken for noise. Fleishman et al. acknowledge this issue and point out
that this problem does not exist in image processing, since images are regularly sampled.
Yet, they propose no solution, and make the assumption of approximate regularity for
the meshes processed by their algorithm.

Geometry Dependent Lighting

With the ever increasing complexity of geometric models, it is becoming easier for
small features and details to get marginalized during rendering. One of the main ways
to expressively render such details is through lighting. Light placement allows the viewer
to comprehend certain parts of an image or rendering. Lee et al.[3] provide a system

1The normal of this plane is given as the weighted average (by triangular area) of the triangles in the
1-ring of v

2

called Light Collages by which lights can be automatically placed around a model so as
to expose features and details of a model such as “local surface orientation, curvature,
silhouettes, and fine texture”[4]. Further, they take advantage of globally discrepant2

lighting to make features even more noticeable than might otherwise be possible.
The Light Collages system determines where lights should be placed around a given

model, with the goal of exposing the most visual detail in the dataset. The system uses
curvature as a metric to determine the manner in which geometry should be lit. Thus,
the first step of applying such a procedural lighting model is to segment the mesh into
patches based on local curvature. Once the model has been properly segmented, the
light directions are chosen by maximizing a light placement function, P (~l). This function

consists of two separate weighting functions S(i,~l), the specular weighting function, and

D(i,~l), the diffuse weighting function. Both the specular and diffuse lighting components
play an important role in determining how model details are accentuated. Specular
highlights have a tendancy to intensify distinct shape in regions of high curvature, a
desirable characteristic. Yet, such highlights could easily overwhelm subtle details present
in areas of low curvature, and hence lighting placement that results in specular highlights
on low curvature areas should be avoided. Likewise, the diffuse lighting function assigns
values to a given vertex vi, so that the value of D(i,~l) at vi is similar to the curvature

intensity at vi
3. The value of the general light placement function P (~l) in direction ~l

is given as
∑

i(S(i,~l) + D(i,~l)). Higher values of the light placement function denote
“better” lighting directions, and so the best n lighting directions from a large set of
possible directions can be chosen according to this function4. After the “best” lighting
directions are chosen, these lights are assigned to the patches of the model via an iterative
threshold scheme. The lights are assigned to patches in accordance with a similarity
function E(p, lk)

5. The value of the similarity function for the current “best” light l1 and
a patch pk is computed, if the function yields a value below a certain threshold, the patch
is assigned to the given light, and the contributions to the light placement function of l1
by the patch pk is then deducted. Once light placement has occurred for every patch in
the model, the illumination between neighboring patches is blended to eliminate visual
continuities.

Beyond the visual cues created via specular and diffuse lighting, the Light Collage
system provides a mechanism for creating proximity shadows and silhouette edges to
enhance depth perception around certain regions of a model. These proximity shadows
and silhouette edges allow for the illustration of distance (different depths) between close
portions of a model lit with similar intensity. Such similarities in intensities yield close
pixel colors in the rasterized image which lead to difficulty in discerning boundaries
between the different sections, even when significant spatial distance may exist within
the data. The proximity shadows and silhouette edges produced by the Light Collages
system attempts to eliminate this problem, thus augmenting depths cues which are not
considered in the light placement function that might otherwise be lost to the viewer

2It has been shown that globally discrepant lighting is not easily noticed by the viewer, and in many
cases globally discrepant lighting can provide compelling feature exposition.

3Here the curvature intensity at vi is given as ci = (κi−κmin)
(κmax−κmin) , where κi is the mean curvature

at vertex i, κmin is the minimum curvature value across the entire mesh, and κmax is the maximum
curvature value across the entire mesh

4Lee et al. compute P (~l) for 12,000 uniformly distributed lighting directions
5Given a patch p, its associated set of surface points Sp, a light lk, and Ii(lk), the illumination intensity

at vertex vi ∈ Sp attributed by lk, the similarity function is defined as E(p, lk) =
∑

i∈Sp
(Ii(lk)− ci)2

3

after the process of rasterization.
The Light Collages system represents a very large step forward in the area of geometry

dependent lighting and procedural light placement. The system produces visually com-
pelling results which bring forth details and local surface cues of model geometry that
are simply lacking under more traditional lighting schemes. Lee et al. even present a
spherical harmonics based method to approximate the light placement function[4]. This
allows for significantly faster computation of the light placement function and for much
lower storage requirements if the light placement map is to be pre-computed. The Light
Collages system represents a fairly comprehensive work in the area of procedurally gen-
erated light placement, but it leaves room for the inclusion of other factors into the light
placement equation. Some visual cues, such as color and reflectivity, which are highly
connected with lighting, are not currently considered in the light placement function, and
their inclusion may lead to even better results.

Mesh Saliency

Even as the size and complexity of models increases, the human viewer still has an
incredible ability to simplify the model in their mind by extracting and weighing “im-
portant” features. The identification of some of these features is based on the context in
which the viewer encounters the subject of the model in real life, or in some other way on
the higher level semantics of the model. However, in many cases, the attribution of signif-
icance to certian parts of a model is based on lower level visual cues. In developing mesh
saliency, Lee et al. attempt to calculate a quantitative measure of the low-level visual
properties that makes something perceptually significant to a viewer. Previous methods
in this vein of research used a simple geometric quantity such as curvature, which, while
important, is itself a global measure incapaple of accounting for the local context of a
detail or feature. The mesh saliency metric is based on a measure of curvature, but also
incorporates a center-surround mechanism to help acquire some sense of local context.
By acquiring and incorporating such local context, the saliency metric provides a mea-
sure that not only appears more correct visually, but also has the desired characteristic
of being scale dependent6.

Lee et al. provide a method that calculates saliency at each vertex of a mesh according
to the curvature7 of that vertex in conjunction with the properties of a local neighborhood
of points8. First, by computing the Guassian-weighted average of the mean curvature over
the neighborhood of points within a certain distance of v, they are able to discern the
local context in which v exists. Next, by computing this Guassian-weighted average at
multiple (fine and coarse) scales9 and calculating the difference in the computed values,
they are able to see how the curvature at v varies with respect to the mean Guassian-
weighted curvature of its neighbors. Thus by carring out this calculation, Lee et al. aim
to first define the local context of a vertex in terms of the weighted mean curvature of
its neighborhood, and then to interpret the mean curvature of that vertex at a local,

6By scale dependent, it is meant that what is considered significant at one scale may not be deemed
so at another scale.

7Here, the term curvature refers to C(v), the mean curvature of v. Where κ1, κ2 are the principle
curvatures at v, then C(v) = κ1+κ2

2
8The neighborhood of a vertex v, denoted N(v, σ), is given by N(v, σ) = {x|‖x− v‖ < σ, x is a mesh

point }[5]
9The effect of computing the average at multiple scales is achieved by varying the size of the neigh-

borhood (σ) of v considered in the Gaussian-weighted average.
4

context-aware, scale, rather than at the global scale normally assumed by curvature
calculations. This new, local, and context-aware curvature metric for the vertex is now
defined as the vertex’s saliency. This saliency measure is much more closely coupled
with perceptual significance than the original curvature metric; this can be understood
through a simple example. One could imagine a high detail model of a freshly cut lawn
on which a newspaper is lying. In this situation, the blades of grass exhibit sharp edges
and areas of extremely high curvature, while the newspaper, by comparison, represents
an area of relatively low curvature. However, in this scene, it is the newspaper and not
the individual blades of grass that draw the viewer’s attention. While a simple curvature
metric would place emphasis on the high curvature blades of grass, the saliency metric
will place empasis on the newspaper due to its difference in mean curvature from its
surrounding neighborhood. Similar circumstances occur often in models, and in such
cases this saliency measure is efficient in determining the perceptual significance of certain
features against a background noise of curvature.

The concept of mesh saliency is very basic, and as a result, very powerful. Even in the
original paper[5], Lee et al. used saliency to enhance mesh simplification and automatic
viewpoint selection. When aiding in mesh simplification, computing a saliency map for
a mesh allowed certains parts of the mesh to be marked as perceptually significant and
consequently they were be simplified less than their surrounding areas. Saliency guided
simplification produced more visually pleasing results than did the chosen competition[2].
Furthermore, when applied to the problem of automatic viewpoint selection, maximizing
the visible saliency often produced more “natural” and informative viewpoints for models
than did the previous approach of maximizing visible curvature (though this was not
always the case). Saliency promises to be an important tool in future research because
it provides a new and superior way to attribute importance to regions of a model, and
such a notiion of importance can allow more selective and intelligent operations and
computations on a mesh.

Vertex Transformation Streams

As the processing power of GPUs has increased at an exponential rate, the bandwidth
allowing the transfer of data to the GPU has quickly fallen behind. Since bandwidth has
now become the major bottleneck in the rendering of large datasets, a desirable action
would be to allow for computation at the VPU (or even PPU) to replace the transfer
of extra data, thus trading computation for bandwidth. Kim et al.[6] present a novel
method for factoring a model into two separate streams representing sets of data points
and the transformations that relate them. On optimal data, it can be shown that a model
consisting of n vertices, traditionally requiring O(n) data to be sent to the GPU, can be
factored into O(

√
n) vertices and O(

√
n) transformations, thus requiring only O(

√
n)

data be send to the GPU. These streams are then recombined at the VPU to reproduce
the original data. The goal is to factor out the most common translations relating the
vertices in a model.

Kim et al., present the concept of a vertex pool10, a set of vertices which cover 11

10The “pool” terminology is common, just as a thread pool represents a set of threads that may be
reused to accomplish different tasks, thus removing the overhead of new thread creation, a vertex pool
represents a set of vertices that, under a given translation, cover another set of vertices which need not
be sent separately to the GPU.

11A vertex v1 is said to cover another vertex v2 under transformation t if t(v1) = v2

5

other vertices under a given translation. Thus the process of factoring the model into
its component streams is reduced to the problem of finding the largest pools and their
corresponding translations. They make the observation that pools can be made larger
by allowing certain vertices to be excluded from the mappings of given transformations.
Thus, overall, it may be beneficial to include a given vertex vi in a transformation pool,
but mark it inactive under a transformation tj, if this allows more vertices to be included
in the pool an active under the given transformation. Kim et al. have experimentally
verified that on average, vertex pools are optimal when about 50% of the vertices in a
pool are made to be active under a particular translation. Because of the limits of current
generation graphics hardware, the greatest speed benefits result from only a few (2-3) of
the largest pools and their corresponding transformations being sent to the GPU. The
results show that the largest two pools cover about 80-85% of the vertices in the model.
Any vertices not covered by a pool and translation are marked as singleton vertices and
must be sent independently to the GPU.

Once the model has been effectively factored into vertex pools and corresponding
transformation streams, the pools and streams can be sent to the GPU. Here, a vertex
shader can apply the proper translations to the vertices from the source pool to produce
the set of vericies in the model covered by the source vertices under the given translation.
Thus the original data is effective reconstructed on the GPU from the input streams. The
savings in bandwidth are between 200% and 300% and as a result of the marginalization
of this bottleneck, framerates were observed to increase by about 30%.

The research done on vertex transformation streams appears to be a monumental step
in a very promising direction. The concept of factoring a model has numerous benifits,
perhaps the most obvious of which is the bandwidth which can be saved by sending the
factored streams of the data to the GPU, rather than the model as a whole. Future
research may eventually allow for the general processing of such factorizations, thus pos-
sibly reducing expensive operations done on large data sets by a factor of O(n). While
the methods and concepts presented by Kim et al. are novel and highly promising, they
are highly restricted specializations of more general themes. They take into consideration
only translations on vertices, and ignore the more general set of transformations. Fur-
thermore, the factorization into vertex and transformation streams fails to incorporate
alot of other information that is normally associated with data points such as normals
and colors. If such methods are to be widely used, these directons should be considered
for future research to discover more general solutions in this promising direction.

Conclusion

The rapid acquisition and generation of large data sets has lead research in a direction
that allows us to more easily handle the ever increasing size and number of models. For
example, while current methods of high resolution data acquisition are sensitive to noise in
the measurement and the ambient environment of the object being scanned, methods have
been developed[1] to allow for the removal of such noise while simultaneously preserving
high frequency features of the data. Furthermore, the magnitude of current and future
datasets threatens to make certain features and details within these datasets difficult to
visualize. Lee et al., however, have created an automated lighting system which optimally
places lights (in a possibly globally discrepant fashion), silhouette edges, and proximity
shadows, so as to allow the viewer to discern surface features and properties of the model.
Lee et al. have also provided a concept that defines salient regions of a mesh, and a new

6

way in which to compute this saliency metric. This work looks promising, and will in
many cases allow for automatic detection of perceptually significant (at least with regard
to low-level visual cues) regions of a mesh. Finally, Kim et al. have explored the factoring
of large models into vertex and transformation streams in an attempt to marginalize the
GPU bandwidth bottleneck by trading computation for bandwidth. Further research
into this concept appears very promising as it may drastically reduce the amount of data
which must be processed when performing certain operations on a mesh. As the size and
number of models available increases at an exponential rate, computer graphics research
must provide ways to process and visualize these data sets so that they are manageable
to the user and become a benifit and not a burden.

7

Bibliography

[1] Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. Bilateral mesh denoising.
ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3):950–
953, 2003.

[2] P. S. HECKBERT and M. GARLAND. Optimal triangulation and quadric-based
surface simplification. Computational Geometry, 14:49–65, 1999.

[3] C. H. Lee, X. Hao, and A. Varshney. Light collages: Lighting design for effective
visualization. pages 281 – 288, 2004.

[4] C. H. Lee, X. Hao, and A. Varshney. Geometry-dependent lighting. IEEE Transac-
tions on Visualization and Computer Graphics, Vol. 12, No. 2:197–207, 2006.

[5] C. H. Lee, A. Varshney, and D. Jacobs. Mesh saliency. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2005), 24, No. 3:659 – 666, 2005.

[6] Youngmin Kim C. H. Lee and A. Varshney. Vertex transformation streams. Graphical
Models, (to appear), 2006.

8

