Annoflow - Handwritten Annotation and Proof-
reading on Dynamic Digital Documents

Phil Crosby Michael Quin Frangois Guimbretiére
Department of Computer Science
Human-Computer Interaction Lab
University of Maryland,
College Park, MD, 20742
philc@umd.edu mikejquinn@gmail.com francoisg@ond.edu

ABSTRACT

Proof-reading digital documents is a difficult taskecause the ink annotations made on
documents do not maintain their relevance as theurdent changes. In addition, applying changes
indicated by proof-reading marks to the documente@ious and error-prone. We propose Annoflow, a
system for managing document annotations. Annoftoanages both free-form margin annotations and
proof-reading marks, intelligently reflowing thera the document changes to maintain their relevance.
also interprets and applies the changes indicagefiNSI| proof-reading marks made on the document. In
this paper, we describe Annoflow as a platformrfegasuring the best strategies for anchoring, réfigw

and applying annotations.

INTRODUCTION

Annotating digital documents with ink is an impartdunction for proof-reading tasks. Figure 1
illustrates common forms of ink annotations. Exigtsystems like Microsoft Word [10] and XLibris [6]
enable digital document annotation with ink andegnate the annotations directly into the document.
However, authors often want the ink annotationstéy meaningful and relevant as the document clsange
For example, comments written next to a paragrapluld stay with the paragraph as it moves arouad th
document. Additionally, when authors review proefding marks made by themselves or others on their
digital documents, they have to manually interpiebf the marks and make the changes to the dosume
themselves. This is a tedious process; authors adaster way to apply proof reading suggestiornhéd

documents.

Annotating documents is useful for
wh‘z“:k"‘i“? progf -reading and actne reading tasks.
o 5 are ne%@used when
annotating a document.

Figure 1: Margin comments (1) can be linked to marks made in the document via “callout marks” (2).
Proof-reading marks (3) are made in the body of the document and are colored red by our system.

Our contribution addresses these needs. We proposeflow, a complete implementation for
annotating digital documents that manages annotatipenned in Microsoft Word, preserves their
meaningfulness as the document changes, and aitaltyabpplies standard ANSI proof-reading marks
[2].

Several solutions exist that address sub-problented area of managing document annotations.
Grouping pen strokes into meaningful units is int@ot for distinguishing between different annotasio
Dynomite [9] is a note-taking system that clustees strokes into groups based strictly on time;bXisi
[6] relies on temporality, proximity, context in ehdocument, and the shape of the strokes. Our
implementation uses a mix of two techniques fouging: explicit cues from the user, and the TabBlét

SDK grouping implementation, which uses proximitygdaemporality criteria to form groups of strokes.

“Reflow” is positioning the annotations intelligéntis the document structure changes. Microsoft
Word supports ink annotation to documents, but dméseflow marks made in the body of the document.
Word reflows annotations made in the margin of dbeument, but annotations can only be made in the
right margin. These annotations can be anchoregdtorihdividual words, and cannot be “linked” to mis
or strokes made in the body of the document viadharitten call-out marks. ProofRite [5] demonstsate
accurate reflow of proof-reading marks made in lthey of the document, but does not address margin
annotations. Several tactics for annotation refloave been proposed in the Callisto system [3], but
Callisto’s reflow of margin annotations is limitéal moving them vertically up and down as the paapbs
move. Our system robustly reflows both documenbfireading marks and margin annotations, handling

annotation collision and re-rendering of anchormmayks.

In addition to managing margin annotations, we halge developed a solution for interpreting
and applying standard ANSI [7] proof-reading markkere are few solutions in this area that apply to
digital documents. MATE [7] can interpret a few mm editing marks and apply them to the document,
but it does not reflow the marks when the docunoemtent changes. ProofRite is able to recognize and

anchor only a few single-stroke proof-reading masgksl it is left up to the user to manually appigrh to

the text. Our system can recognize a much greabees of ANSI proof-reading marks, reflow them lae t
document changes, and can apply the desired chémges document.
MANAGING PROOF-READING ANNOTATIONS

Proof-reading annotations are made in the bodiefibcument. To stay relevant as the document
changes, they must anchor accurately, reflow sBnsibd be recognized and interpreted correctly.
Recognizing Proof-Reading Annotations

Annoflow uses the Tablet PC SDK gesture recognitionctionality, complemented with a
modified version of the Siger recognition enging. [8/e chose Siger for ease of implementation; it
recognizes gestures based on regular expressiatieeofional vectors. For greater accuracy, wemaay
additional pen stroke characteristics, such ag#reentage of the stroke traveling in a specifieation
and the distance between the stroke’s start angheinds.
Clustering and Anchoring Proof-Reading Annotations

Some annotations consist of more than one strokeedognize multi-stroke proof-reading marks,
we must cluster strokes that might be related,thed analyze them as a whole unit. We do this lepie
track of all “incomplete” annotations. When a nstwoke is added, it is first determined whethenatrthe
new stroke is recognized as a part of a multi-graknotation. If it is, the new stroke is checkgdinst all
known incomplete annotations. An incomplete anmmatan then “claim” the new stroke as its owrt ii
determined that the strokes are associated withammgher, which is determined by the new stroke’s

proximity and its shape.

After an annotation is interpreted, it must be amed to a point in the document to allow for
proper reflow. For each supported proof-readingkmave have identified a specific point within its
strokes that is used for identifying the text mad¢vant to the annotation. Annotations are anchtoehe

word or character in the document which lies dlyelselow the stroke’s anchor point.

The anchor points are annotation dependent (FigureMany annotations, such as the “italic”
proof-reading mark, simply use the midpoint of sike. One of the more interesting anchor pomthat
of the transpose proof-reading mark, which usesptbiat of inflection between the concave-down and

concave-up halves of the mark (Figure 3). We ftmal point of inflection by associating a vector wéidch

point of the stroke. The vector with its angle elststo 90 degrees (pointing down, if written l@ftright) is

determined to be the point of inflection.

) \
AVA

insert.quote insert.apostrophe

Aranspos@words, italicize delete<

capitalize small.caps inser}\comma

Y

Figure 2: Common proof-reading marks and their anchor points. Anchor points are determined by
heuristics specific to each mark.

Inflection point used

/ for anchoring and
/ command execution
N——’-——’)

Figure 3: The transpose mark’s anchoring point is determined by the inflection point of the curve.

Some annotations require contextual informatiomfrthe document to be anchored accurately.
For instance, the “insert period” and “insert comiraanotations are always meant to be placed directl
behind a word. We look at the words surroundirggahchor point and use this information to fineettime

accuracy of the anchor point.

Strokes which are not recognized as ANSI proofmggdiarks are simply anchored to the page at
the stroke’s midpoint.
Reflowing Proof-Reading Annotations

Proof-reading annotations within the document npusperly reflow as the document changes in
order to remain relevant. Our system anchors preading marks to words or characters, which then

follow the text as it reflows.

The problem of reflowing annotations that extendoss multiple words has been previously
addressed by both XLibris and ProofRite. As sumlr, system focuses on proof-reading annotationts tha
apply to a single word or character within a wondth the exception of the “transpose” proof-reading

mark.

If a word is deleted that contains a proof-readimayk, the mark is deleted along with the word.

We avoid leaving “floating,” unanchored marks oa ttocument.

Applying Proof-Reading Annotations

Each proof-reading annotation contains an assaciattion which it performs when the proof-
reading mark is applied to the document. The atimots that only apply to a specific point in the
document (such as the “insert period” annotatiomcate directly at their anchor point. Other aations
may extend across an entire word (such as thec"itannotation), and so we must use the context

surrounding the anchor point to accurately appéygtoof-reading mark.

Whento apply the proof-reading marks is a difficultegtion. Our system affords two options:
applying them as soon as they’re recognized, olyaggpthem later and all at once. Each of thesatagies

is addressed in the discussion section.

MANAGING MARGIN ANNOTATIONS

When writing annotations in the margin, we encoaragers of our system to use an explicit
interface for grouping and anchoring their margimatations; when this interface is neglected, we fa

back to an implicit grouping and anchoring system.

Explicit Marking Interface

Annotations made in the margins of documents care lgrouping and anchoring ambiguity
(Figure 4), even for humans [3]. Users recogniaseéhambiguities and can become frustrated in trigng
“guess” what the system will do, and evidence satgythat users are very unforgiving if their antiotes
are grouped and anchored incorrectly [4]. To sdhis problem, we've designed an explicit marking

interface that eliminates the ambiguity and gueskwo

Four score and seven Y@vise Now we are engaged in a
years ago our fathers +ais great civil war, testing
brought forth on this Paneq aph whether that nation can
continent, a new nation. long endure.

Figure 4: Does the comment apply to the right or to the left paragraph? This annotation is
ambiguous.

After writing an annotation, the user can drawk&taround the corners of the annotation which
explicitly groups the strokes together. Furthermdoeanchor the annotation to a paragraph, the ceser
draw a straight line from the annotation to their@elsparagraph it's referring to. Margin annotasaran
also be linked to inline annotations by connecting two with a “call-out” line (Figure 5). This eligt
marking interface eliminates ambiguity and errogmuping and anchoring, and raises the confidémce

the system’s accuracy.

Implicit Marking Interface

It's unreasonable to expect the user to perfeatheese to the explicit marking interface all of the
time. In fact, having to continually draw tick markround every annotation can become burdensorde, an

is unnecessary in cases where it's fairly obvioow the annotation should be interpreted.

When no explicit grouping marks are present, wehanand group according to some reasonable
defaults. For grouping, we run the strokes throtigh Tablet PC recognizer, which gives fairly actaira
groups according to words, sentences and paragrAplgsstrokes that are classified as being in e
paragraph are grouped together. Grouping doesscridiinate based on temporality; if a mark is \enitt

near another annotation later, it is grouped tagetlith that existing annotation based on positifame.

In the absence of explicit anchoring marks, theotation is anchored to the paragraph located
nearest to the top of the bounding box of the aatimt; if it's between two paragraphs, like in Figu, it
anchors to the one on the right.

Reflowing Margin Annotations

Like proof-reading marks, margin annotations mukdpd to changes in the document to remain
relevant. Annotations made in the margin are arehdo a paragraph either implicitly or explicitgnd
then move vertically in the margin as that paraggnaqpves up and down in the document. If a paragigph
deleted, we interpret this as meaning that any @tioos anchored to that paragraph are no londevant,

and we remove those annotations from the document.

When annotations written in the margins are linké&d a “call-out” line to an anchoring mark
made in the body of the document, the margin anieotanust be sensitive to how the anchoring mark
moves. In our design, when the anchoring mark mavesind in the paragraph, the margin annotation
stays fixed; only the anchoring mark is updatedyFé 5). We avoid “cleaning up” the anchor mark and

redrawing it as a smooth line; instead, we favassprving the look of the user’'s hand-drawn anchankm

Now we are engaged in a great Now we arc engaged in a great
r civil war, testing whether we can | civil wat, testing whether that
eéndo e i} londendure. We are met on a great Gndur@ i} nation, or any nation so conceived
mMoflhm war. We have mysy y and so dedicated, can long endure.
come to dedicate a portion of that ctongg “tield

field. as a final resting place for of that war. We have come to

Figure 5: A margin annotation is linked to an anchoring mark in the body of the document via a call-
out mark. Anchor marks are transformed to remain connected as the document annotation is
moved.

When the anchoring mark changes paragraphs, thgimeamnotation is moved along with it. This

is to avoid very long anchor marks stretching astbs page.

As the document is changed, margin annotations nmaynto each other and overlap as they're
reflowed around the document. To prevent this, walesigned an algorithm to optimize the position of
annotations in the margin so that they avoid oyednd yet still remain meaningful. Briefly, our oak
strategy is to make as little disturbance to theo#ations as necessary. Our algorithm shifts margin
comments up and down to make room for a newly weftb annotation. It performs a multi-pass location
optimization to fill all available white space. rikflows an annotation above or below the boundthef
paragraph it's anchored to only as a last resod,reever moves an annotation to the opposite margin
IMPLEMENTATION

Our implementation is built as a Microsoft Word &dd using the Tablet PC SDK and its
recognizer. Some annotations are recognized usmgdified version of the Siger recognizer, whilaars
use the Tablet PC SDK's built-in gesture recogrizé/e used the Siger recognizer in some cases $®cau

while we found it to be less accurate, it is maasily programmable than the Tablet PC SDK recogsize

While working with the internals of Word, we’ve fod that our task could have been made
considerably easier if it supported the concepamdthors that can be attached to a word or paragraph
which inform listeners as they're moved in the doent. Currently, we do this in a circuitous fashimn
attaching marks to ranges of text in a documerd, manually polling those ranges for changes inrthei

position.

Another useful addition to Word’s SDK would be ags¢o its drawing layer. Currently we attach
an ink-collecting overlay to Word and use that as drawing surface. Since Word doesn’t report witen
needs to redraw, it can periodically overwrite viddisplayed on the overlay, causing flicker.

DISCUSSION AND FUTURE WORK

Currently, we're conducting a user study to testciwhis more effective: instant-apply of proof-
reading marks as they're written, or applying thiewer and all at once. Instant apply offers immeia
feedback and gratification. If a mistake is madegain be corrected right away. However, having your
document change as you write on it can be distrgctind applying annotations immediately introduces

ambiguity in some multi-stroke commands.

Delaying the execution of proof-reading marks isrenoptimal in peer review scenarios, where
only the author wants to apply changes to the decinihis model decreases confidence, because you
cannot be sure if the system interpreted and aerdnhtre stroke correctly. To alleviate some of these
problems, we’ve created an undo sidebar where skee can undo the application of any proof-reading

mark (Figure 7).

raan e e

Line Break we should do tl
sivil war, testing whethe
long endure [We are me Butina larger

- this ground. 1
farabove ourp

oy what we say he
to be dedicated

Figure 7: All marks are shown in their original context and can be undone after they’'ve been applied.

a portion of that field, a:

Our hypothesis is that instant-application of proedding marks is better suited for managing
simple proof-reading annotations. This method hasadvantages that make it preferred for proof-resd
digital documents on a tablet PC. First, seeing etiaiely the effect of your mark gives you instant
feedback and eliminates uncertainty in the statthefsystem. Secondly, the immediate feedback allow

you to detect failures as soon as they happehdif happen), and undo any mistakes made by thensyst

While general freeform annotations and commentsmp®artant to preserve on the document in
group collaboration scenarios, preserving spegiiioof-reading marks in their written form is not

necessarily important.

In future work, we hope to present the findingghe$ study. Additionally, we will measure the
accuracy of our system for margin-reflow tasks. & wish to get user feedback on how well ouriekpl
and implicit margin annotation interfaces work.idtless obvious how margin annotations should be
anchored and reflowed, and there are many differefibw strategies. Using Annoflow, we wish to

compare different reflow strategies and see wtsahast effective for document annotation.

There are many deficiencies in the system that \kedto address. Ink marks made on the Tablet
PC are larger and sloppier than those made on pafed like to add a zoomable input panel like D[Z]
to make annotations made in Annoflow mimic the lobkannotations made on paper. We would also like

to implement an interface for fixing anchoring areflow mistakes made by the system, as suggested by

3].

ACKNOWLEDGMENTS

I'd like to thank Chunyuan Liao, Catherine Plaisantl Jerry Fails for their helpful comments on traff

this paper.

REFERENCES

1.

Agrawala, M. and Shilman, M. DIZI: A Digital Ink Zmning Interface for Document Annotation.
INTERACT 2005.

ANSI, American national standard proof correctiodi®81: American National Standards Institute.

Bargeron, D. and Moscovich, T. 2003. Reflowing tlibink annotationsProceedings of CHI '‘Q3pp.
385-393.

Brush, A. J., Bargeron, D., Gupta, A., and Cadiz).2001. Robust annotation positioning in digital
documentsProceedings of CHI 'Q1pp. 285-292

. Conroy, K. Levin, D. Guimbretiere, F. 2004. Prod&Ri A Paper-Augmented Word Processor.

Proceedings of UIST '04

Golovchinsky, G. and Denoue, L. 2002. Moving Markupepositioning Freeform Annotations.
Proceedings of UIST '0pp. 21-30.

Hardock, G., Kurtenbach, G., and Buxton, W. 1993mArking based interface for collaborative
writing. Proceedings of UIST '9®p 259-266.

Siger — Simple Gesture Recognizer. http://sourceforet/projects/siger/

Wilcox, L. D., Schilit, B. N., and Sawhney, N. 1993ynomite: A Dynamically Organized Ink and
Audio NotebookProceedings of CHI '97pp. 186-193.

10. Microsoft Word 2003 — http://office.microsoft.condrd/

