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Abstract

Entity Resolution (ER) is the task of finding and merging entities within
a single data source or across several data sources that represent the same
real world entity. Evaluating ER results is a very important procedure used
to ensure how accurate and correct an ER algorithm is. There have been
several measures proposed and used for ER evaluation (e.g., pairwise F1,
B3 F1, CEAF). With so many new and existing evaluation measures, there
is a need to survey, characterize, and evaluate these measures. In this pa-
per, we explore these ER evaluation measures. First, we provide a general
definition to the ER problem. Next, we define many of the widely used mea-
sures, including a discussion of the different advantages and disadvantages
of each measure. We also discuss trends in the use of the ER evaluation
measures based across multiple domains. Finally, we provide examples of
ER predictions and compute several of the measures we discuss to highlights
differences and overlaps in the measures. In doing so, we hope to provide
practitioners with a practical guide for understanding ER evaluation.

1 Introduction
Entity Resolution (ER) is the problem of identifying and merging references within
text or across several data sources that represent the same real world entity. It is
important to properly understand ER since it is such a widely occurring problem
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[22, 6, 27]. For example, when a company is merging two databases of customer
financial data, the same customer might be represented differently as shown in
Table 1.

Table 1: Customer information within two databases

Database Name Date of Birth Address
Database 1 John Doe 11/11/1990 College Park, MD
Database 1 J. Doe - Maryland, USA
Database 2 John K. Doe Nov. 1990 College Park, MD 20742
Database 2 Jon Doe - MD, USA
Database 3 J. K. Doe 1990 College Park, MD

In the above example, the first three customer records or references (John Doe,
J. Doe, and John K. Doe) actually refer to same person and the last two (Jon Doe,
J. K. Doe) refer to a different person. As this example shows, ER can be a very
difficult problem. Duplicates exist within the same database and across different
databases with varying levels of quality. The amount and quality of available
information often make it very difficult to resolve any ambiguities in the data.
In this simple example, the ER algorithms must take into account missing data
or different ways of representing data (e.g., date of birth, addresses). In practice,
however, there also temporal (e.g., transactional) and relational information which
also need to be considered.

The Entity Resolution (ER) problem exists in many different domains and is
given different names within different domains. In the computer vision and image
processing domain, one version of the the problem is called “object identifica-
tion” where the task is to match each object in a video to a corresponding person
[32]. In natural language processing, the problem is called “coreference resolu-
tion” where the task is to determine which noun phrases refer to the same entity
[6]. In the database domain, the task of removing duplicates while merging two
or more databases is called “database merging” or “merge/purge processing”, and
removing duplicates from a single database is called “deduplication” [6], “data
alignment,” and “Entity matching” [25]. The machine learning domain uses sev-
eral of the above names including “entity resolution” [6], “entity matching” [15],
and “deduplication” [2].

There have been many different approaches to ER [22, 6, 27]. As the number
of these proposed approaches grows, so does the importance of properly eval-
uating how accurate and complete ER predictions are. This paper provides an
in-depth analysis of several ER evaluation techniques. In Section 2, we provide a
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general overview of the ER problem. We define many of the widely used measures
in Section 3, including a discussion of the different advantages and disadvantages
of each measure. We also discuss trends in the use of the ER evaluation mea-
sures based across multiple domains. Finally, in Section 4 we provide examples
of ER predictions and compute several of the measures we discuss to highlight the
differences and commonalities in the measures.

2 Entity Resolution Evaluation

2.1 Definition of Entity Resolution
Entity resolution, in its most general sense, involves reasoning over a given a set
of ambiguous references R = {ri} to some unknown set of entities. The objective
of ER algorithms is to identify, for each ri, rj ∈ R, whether ri and rj refer to the
same real world entity (i.e., coreferent) given the attributes and relationships of
the references.

The predictions of ER algorithm can naturally be represented as either “pairs”
or “clusters” of references. The pairs of references represent the pairs which the
ER models have predicted as coreferent (i.e., they refer to the same underlying
entity). We denote pairs by (ri, rj), where ri and rj are individual references pre-
dicted coreferent. In some applications, however, the transitivity of this relation
(i.e., if (ri, rj) and (rj, rk), then (ri, rk)) may need to be enforced. In those cases,
a more natural representation is a set of references (we refer to as a cluster) whose
element references are coreferent to each other. We denote a cluster of nodes as
{r1, r2, ..., rk}. We use “cluster” or “entity” interchangeably as a cluster repre-
sents the set of references which are predicted to the same real world entity.

3 Overview of Evaluation Measures
There are several ways of evaluating ER. Evaluation of an ER algorithm involves
checking how correct the ER predictions are compared to some previously anno-
tated the ground truth. This comparison is done with an evaluation measure which
signify how close the predicted result is to some annotated ground truth of pairs or
clusters. We list many of the most commonly used measures below separated into
three main categories: pairwise, cluster, and edit distance. We define each of the
categories in the following sections. Variants of different measures in sublist of
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the original measure. In addition, the most commonly used measures, discussed
further in the following sections, are shown in bold:

1. Pairwise:

• Pairwise precision, recall, F1 [21]

2. Cluster:

• Cluster precision, recall, F1 [11] [21]

• Closest Cluster precision, recall, F1 [4] [21]

• MUC precision, recall, F1 [30]

• B3 precision, recall, F1 [3]

(a) B3all precision, recall, F1 [29] [28] [8]
(b) B30 precision, recall, F1 [29] [28] [8]
(c) B3

r&n precision, recall, F1 [24] [8].
(d) B3

sys precision, recall, F1 [8]

• Constrained Entity-Alignment F-Measure (CEAF) [18]

(a) CEAFr&n precision, recall, F1 [24] [8]
(b) CEAFsys precision, recall, F1 [8]
(c) CONE CEAF (Constrained Entity-Alignment F-Measure [17]

• CONE B3 precision, recall, F1 [17]

• Automatic Content Extraction (ACE) evaluation score [9]

3. Edit Distance:

• Basic Merge Distance (BMD) [1] [21]

• Generalized Merge Distance (GMD) [21]

• Variation of Information (V I) [20]

We note that many measures presented above are based on measuring the “pre-
cision” and “recall” of the predicted pairs or clusters. While the different measures
vary on exactly how each is computed, the general definition for these terms are
consistent. Precision is the fraction of the predicted pairs or clusters in the result
that “match” the ground truth for various definitions of what a “match” includes.
In other words, precision is a measure of the correctness of the predicted results
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relative to the ground truth. We can formalize precision based with a widely used
statistical approach:

precision =
tp

tp+ fp

where tp is short for true positives and fp is short for false positives. True positives
are the number of correctly predicted coreferences. False positives are the number
of falsely predicted coreferences.

Recall, on the other hand, is the fraction of truths that are successfully “present”
in the result. In other words, recall is a measure of the completeness of the pre-
dicted coreferences. We can also formalize recall based with a widely used statis-
tical approach:

recall =
tp

tp+ fn

where tp is short for true positives and fn is short for false negative. True positives
are defined above. False negatives are the number of true coreferences that have
not been predicted.

We note that there are natural trade-offs between precision and recall. For
instance, if the result falsely predicts that all the references correspond to the same
entity, then the precision would be low as many of these coreferences are false, but
the recall would be high because all the coreferences are captured. Inversely, if the
result only predicts a very small number of coreferences, then the precision maybe
high because the few predicted are correct, but the recall may be low because
most coreference would be missed. To capture this trade-off between precision
and recall, the F1 score, the harmonic mean of the two measures, is often used.
F1 gives a single measure consisting of features of precision and recall and is
computed as follows:

F1 = 2 · precision · recall
precision + recall

3.1 Pairwise Measures
The pairwise evaluation measures compute all the pairs of references to evaluate
ER results. Each pair represents a link between two references. All the pairs
represent all the possible combinations between each reference. Result pairs are
compared to the truth pairs. Given a truth T and result R set, all pairs between
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references are computed for both the T and R resulting in pairedR and pairedT. If
T = {r1, r2, r3}, pairedT = {(r1, r2), (r1, r3), (r2, r3)}.

3.1.1 Pairwise F1

Pairwise F1 is one of the oldest ER measures still used today. The reason for this
may be the simplicity of computing it. Of the fifteen papers we surveyed, thirteen
use a pairwise measure, of which twelve use Pairwise F1 and one just uses pair-
wise precision and pairwise recall. As we mentioned, pairwise measures use pairs
to represent links between references.

Pairwise precision is the fraction of reference pairs in the result R that are also
in the truth T.

PairwisePrecision(T,R) =
|pairedR ∩ pairedT|

|pairedR|

Pairwise recall is the fraction of reference pairs in the truth T that are also in the
result R.

PairwiseRecall(T,R) =
|pairedR ∩ pairedT|

|pairedT|
Pairwise F1 is the harmonic mean of the pairwise precision and pairwise recall.

Pairwise F1 = 2 · PairwisePrecision · PairwiseRecall
PairwisePrecision + PairwiseRecall

One of the benefits of pairwise F1 is the ease of representing each pair as a pos-
sible link between references. In addition, a pairwise representation is good way
of separating references where transitivity doesn’t hold. Pairwise measures are
good measures for applications that use pairs, such as active learning. One of the
disadvantages is that a pair may not necessarily be the natural way of represent-
ing links between references, because of the lack of transitivity between multiple
pairs. In other words, in some applications, where transitivity is required, the pre-
dicted pairs may not exhibit transitivity. We mentioned above that this way of
separating references without transitivity may be an advantage, but many appli-
cations consider coreference between multiple references as a transitive relation.
Another disadvantage is that pairwise metrics cannot represent singleton entities,
which are entities that are mentioned only once [8].
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3.2 Cluster Measures
The cluster evaluation measures compares clusters to evaluate ER results. A clus-
ter represents linked references. Result clusters are compared to the truth clusters.
Given a truth T and resultR set of clusters e.g. T = {{r1, r2, r3, r4, r5}, {r6, r7}, {r8, r9, r10, r11, r12}}
and R = {{r1, r2, r3, r4, r5},
{r6, r7, r8, r9, r10, r11, r12}}. A cluster within the set T is denoted by t. A cluster
within the set R and is denoted by r. The entry ti represents a given reference
within a cluster t e.g. t is {r1, r2, r3, r4, r5} and t1 is r1. The same holds for ri.

3.2.1 Cluster F1

Huang et al. [11] [21] proposed cluster F1 in 2006. The cluster F1 compares at
the cluster level instead of the reference level and counts the clusters that exactly
match [21].

Cluster precision is the fraction of the number of completely correct clusters to
the total number of clusters retrieved in the result [11].

ClusterPrecision(T,R) =
|R ∩ T |
|R|

Cluster recall is the fraction of the number of completely correct clusters to the
total number of true clusters [11].

ClusterRecall(T,R) =
|R ∩ T |
|T |

Cluster F1 is the harmonic mean between the cluster recall and the cluster preci-
sion.

Cluster F1 = 2 · ClusterPrecision · ClusterRecall
ClusterPrecision + ClusterRecall

The advantage of cluster F1 is that it checks for completely correct clusters and
this may be a more reasonable way of checking for coreference, rather than giving
credit for partially correct clusters done in pairwise measures. This may also be
a disadvantage. Cluster F1 does not give credit to partially correct clusters that
miss a few references, since it checks for completely correct clusters [11]. This
makes cluster F1 more strict and less informative in some cases than the pairwise
measures that measure at the reference level [11]. For this reason, cluster F1 is a
good measure for applications that need exact or strict matching.
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3.2.2 Closest Cluster F1

Benjelloun et al. [4] [21] proposed closest cluster F1 in 2008. The closest cluster
F1 sums the similarities of all “closest” cluster pairs consisting a result cluster
paired with a truth cluster. The “closest” cluster pair is found using the maximum
Jaccard similarity between all result cluster and truth cluster pairs. Unlike clus-
ter F1, which checks for completely matching clusters, closest cluster F1 matches
clusters based on Jaccard similarity. In a way, this is similar to the optimal match-
ing done in CEAF, except, here, Jaccard similarity is used. Here, we define Jac-
card similarity between two clusters:

Jaccard(r, t) =
|r ∩ t|
|r ∪ t|

[6]

The closest cluster precision is the fraction of the sum of the maximum Jaccard
similarity of result cluster and truth cluster pairs and the total number of clusters
in the result [21].

ClosestClusterPrecision(T,R) =

∑
r∈R maxt∈T Jaccard(r, t)

|R|
The closest cluster recall is the fraction of the sum of the maximum Jaccard sim-
ilarity of truth cluster and result cluster pairs and the total number of clusters in
the truth [21].

ClosestClusterRecall(T,R) =

∑
t∈T maxr∈R Jaccard(t, r)

|T |
Closest cluster F1 is the harmonic mean between the closest cluster recall and the
closest cluster precision.

ClosestCluster F1 = 2 · ClosestClusterPrecision · ClosestClusterRecall
ClosestClusterPrecision + ClosestClusterRecall

An advantage of closest cluster F1 is that is fairly easy to compute. A dis-
advantage of closest cluster F1 is that it has not been used as much as the other
cluster measures as it is a fairly newer measure.

3.2.3 MUC F1

During the sixth Message Understanding Conference in 1995, Vilain et al. [30]
proposed the MUC score, which gets its name from the conference name (MUC-
6). The MUC score considers a cluster of references as linked references where
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each reference is linked to at most two other references. For example, cluster
{r1, r2, r3, r4, r5} would have four links between the five references. MUC mea-
sures the number of link modifications required to make the result set identical to
the truth set.

We define a function partition(c, S) that takes in a cluster c and a set of clusters
S and returns the set of clusters within S that intersect with c.

partition(c, S) = {s |s ∈ S & s ∩ c 6= ∅}

For MUC precision, we can use |partition(r, T )| to give us the number of
clusters within the truth T that the recall cluster r intersects with. This number
gives us the number of missing links for r. MUC precision is a sum for each
cluster in the result. MUC precision is the fraction of the difference of the correct
links and the missing links in the result cluster and the correct links cluster in the
result cluster for each cluster in the result. Basically, MUC precision computes the
minimum number of link modifications required to make the result set identical
to the truth set.

MUCPrecision(T,R) =
∑
r∈R

|r| − |partition(r, T )|
|r| − 1

For MUC recall, we can use |partition(t, R)| to give us the number of clusters
within the resultR that the truth cluster t intersects with. This number gives us the
number of missing links for t. MUC recall is a sum for each cluster in the truth.
MUC recall is the fraction of the difference of the correct links and the missing
links in the truth cluster and the correct links cluster in the truth cluster for each
cluster in the truth. Basically, MUC precision computes the minimum number of
link modifications required to make the truth set identical to the result set.

MUCRecall(T,R) =
∑
t∈T

|t| − |partition(t, R)|
|t| − 1

MUC F1 is the harmonic mean of the MUC precision and MUC recall.

MUC F1 = 2 · MUCPrecision · MUCRecall

MUCPrecision + MUCRecall

MUC was one of the earliest cluster based measures, and had quite a few flaws.
Compared to pairwise F1 mentioned in Section 3.1.1, MUC F1 can represent sin-
gleton entities [8]. However, MUC doesn’t penalize separation of a singleton
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entity from a linked cluster [3][8]. Another disadvantage is that MUC considers
all errors to be equal [3]. We can explain this disadvantage with an example. We
are given the truth T = {{r1, r2, r3, r4, r5}, {r6, r7}, {r8, r9, r10, r11, r12}} and the
first result R1 = {{r1, r2, r3, r4, r5}, {r6, r7, r8, r9, r10, r11, r12}} and the second
result R2 = {{r1, r2, r3, r4, r5, r8, r9, r10, r11, r12}, {r6, r7}}. In R1, seven refer-
ences are falsely predicted to be the same entity, while in R2, ten references are
false predicted to be the same entity. We should expect the precision for R2 to be
lower than R1, but the two results’ MUC precisions are the same (R1 = 0.90 and
R2 = 0.90) because MUC considers missing links as the same. To summarize,
MUC only considers missing links between references, which leads to unintuitive
evaluation results.

3.2.4 B3F1

B3F1 was proposed by Bagga and Baldwin [3] in 1998 to overcome the shortcom-
ings of MUC described above. B3F1 is mostly used in the NLP disciple shown by
our research in Table 3.

We define a function results(ti) that takes a reference ti as an input and returns
a set of clusters within the result that contains ti. We also define n to be the num-
ber of total references in the truth.

B3 precision is the weighted precision for each reference ti in the truth.

B3Precision(T,R) =
1

n

∑
t∈T

∑
ti∈t

∑
r∈results(ti)

|r ∩ t|
|r|

B3 recall is the weighted recall for each reference ti in the truth.

B3Recall(T,R) =
1

n

∑
t∈T

∑
ti∈t

∑
r∈results(ti)

|r ∩ t|
|t|

B3 F1 is the harmonic mean of the B3 precision and B3 recall.

B3 F1 = 2 · B
3Precision · B3Recall

B3Precision + B3Recall

Like MUC, B3 F1 can also represent singleton entities [8]. The biggest ad-
vantage of B3 F1, as we mentioned above, is that eliminates the flaws of MUC.
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Primarily, that all errors are not considered to be equal. One disadvantage of B3

is that it assumes that the references in the result to be identical to the truth [8].
B3 does not deal with references that are not in the truth, called twinless men-
tions [8] [28]. Twinless mentions can be described with an NLP example, since
they arise in NLP applications. For instance, there is an application that is using
noun phrases to identify presidents from a documents that talk about presidents
and their family life with another document that only talks about presidential cam-
paigns. Assuming that names of family members of presidents are only mentioned
in the first document, these names are twinless mentions.

Stoyanov et al. [29] [28] [8] propose B3all and B3
0 in 2009 to deal with twin-

less mentions. B3
0 discards twinless mentions, while B3all retains twinless men-

tions [8]. Rahman and Ng [24] [8] propose B3
r&n in 2009 to handle twinless

mentions based on singletons. Cai [8] proposed B3
sys in 2010 to handle twinless

mentions more adequetely compared to the previous variants. Lin et al. [17] pro-
posed CONE B3 F1, which is based on approximation algorithms, in 2010.

3.2.5 CEAF

Luo [18] proposed Constrained Entity-Alignment F-Measure (CEAF) in 2005.
Luo criticized B3 because it uses clusters more than once in computing precision
and recall [18] [8]. CEAF uses similarity measures to first create an optimal map-
ping between result clusters and truth clusters. Using the optimal mapping, CEAF
computes the precision and recall using self-similarity and one the similarity mea-
sures (φ) described below:

φ1(T,R) =

{
1, if R = T

0, otherwise

φ2(T,R) =

{
1, if R ∩ T 6= ∅
0, otherwise

φ3(T,R) = |R ∩ T |

φ4(T,R) =
2 · |R ∩ T |
|R| + |T |

In most uses of CEAF, both similarity measures φ3 and φ4 are used to give CEAF-
φ3 and CEAF-φ4 respectively.

We define a function m(r) that takes in a cluster r and returns the true cluster
t that result cluster r is mapped to, with the constraint that one true cluster can
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be mapped to at most one result cluster. We assume that if the result cluster r
does not get mapped, m(r) returns the empty set. In other words, m(r) returns the
optimal mapping for result cluster r in the truth.

CEAF precision is the fraction of the score of the optimal match and the score
for mapping the result to itself (or self similarity).

CEAFφiPrecision(T,R) =
maxm

∑
r∈R φi(r,m(r))∑

r∈R φi(r, r)

CEAF recall is the fraction of the score of the optimal match and the score for
mapping the truth to itself (or self similarity).

CEAFφiRecall(T,R) =
maxm

∑
r∈R φi(r, m(r))∑

t∈T φi(t, t)

CEAF F1 is the harmonic mean of the CEAF precision and CEAF recall.

CEAFφi F1 = 2 · CEAFφiPrecision · CEAFφiRecall

CEAFφiPrecision + CEAFφiRecall

As mentioned above, the two most used similarity measures for CEAF are
φ3 and φ4. If we look at CEAFφ3 and CEAFφ4, for both precision and recall,
closely, we can see that CEAFφ3 is normalized by the number of references while
φ4 is normalized by the number of clusters or entities. In other words, CEAFφ3 is
reference-based and CEAFφ4 is entity-based.

An advantage of CEAF over B3 is that clusters are not used more than once in
computing CEAF precision and recall. Rather, the optimal mapping between each
cluster is used. In other words, entities won’t receive double credit. In addition,
this optimal mapping may be a more practical approach for evaluation. One of
CEAF’s disadvantages is that there is considerably more computation required
compared to other measures. Another disadvantage of CEAF is that it does not
handle twinless mentions, introduced in Section 3.2.4, since twinless mentions are
not mapped to the truth [8].

Rahman and Ng [24] [8] proposed CEAFr&n in 2009. Cai [8] proposed CEAFsys

in 2010 to handle twinless mentions. Lin et al. [17] proposed CONE CEAF, which
is based on approximation algorithms, in 2010.

3.2.6 Other Variants

The ACE evaluation score was initially proposed during the Automatic Content
Extraction program in 1999 [9]. It is a successor of MUC, but a predecessor
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of CEAF. Like CEAF, it, too, does optimal mapping which is described above.
Once the optimal matching clusters have been found between the result and truth,
the precision and recall are calculated, between optimal matches. Unlike CEAF,
ACE calculates precision and recall based on the true positive, false positive, false
negative approach presented in Section 3. In addition, this approach doesn’t nor-
malize the precision and recall in the way CEAF precision and recall do, which is
mentioned above.

3.3 Edit Distance Measures
The edit distance measures are based on cluster splits and merges needed to con-
vert the result to the truth. This type of comparison is a natural way of comparing
ER results which represents the number of changes required to correct the result.
We believe that there is more research required in edit distance approaches for ER
evaluation.

Given a truth T and result R set of clusters e.g. T = {{r1, r2, r3, r4, r5},
{r6, r7}, {r8, r9, rA, rB, rC}},R = {{r1, r2, r3, r4, r5}, {r6, r7, r8, r9, rA, rB, rC}}.
A cluster within the set T is denoted by t. A cluster within the set R is denoted by
r. ti represents a given reference within a cluster t e.g. t is {r1, r2, r3, r4, r5} and
t1 is r1. The same holds for ri.

3.3.1 Basic Merge Distance (BMD)

Al-Kamha et al. [1] [21] proposed Basic Merge Distance (BMD) in 2004. Ba-
sic Merge Distance (BMD) counts the number of splits and merges necessary to
convert a result to a truth set. Below, we formalize BMD with a simple equation.

φ2(T,R) =

{
1, if R ∩ T 6= ∅
0, otherwise

(same as above)

BMD(T,R) =
2 ·

∑
t∈T

∑
r∈R φ2(t, r)− |T | − |R|
|T | − 1

The denominator in the above equation (|T | − 1) is used to normalize BMD. The
reason for this normalization is that a result with a smaller number of clusters
would require less splits and merges to fix compared to a result with more clusters.
We have formalized BMD above, but BMD actually involves a path of splits and
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merges. We define a split that takes in a cluster c and returns two split clusters that
do not overlap.

Split(c) = {ci, cj | ci ∩ cj = ∅, ci ∪ cj = c, ci, cj 6= ∅}[21]

We define a merge that takes in two clusters ci, cj and returns a single combined
cluster.

Merge(ci, cj) = {c | c = ci ∪ cj}[21]

BMD is the number of splits and merges required to fix a result. BMD has
the restriction that splits must occur before merges. BMD is normalized by the
number of clusters in the result. In our examples described below, we represent
BMD to be 1−BMD in order to get a better comparison with the other measures.

3.3.2 Other Variants

Variation of Information (V I) was proposed by Meila [20] [21] in 2003. V I is
a distance measure between two clusterings. It measures information lost and
gained while converting one clustering to the other [21]. Menestrina and Whang
[21] proposed Generalized Merge Distance (GMD ) as a better edit distance ap-
proach to ER evaluation. GMD computes the shortest edit distance from an ER
result to a truth using merges and splits, similar to BMD, on clusters [21]. An
advantage of GMD is that merge and split costs can be configured based on clus-
ter sizes [21]. Menestrina and Whang propose that GMD can be standard way of
evaluating ER because of its similarity to pairwise F1, V I and BMD.

4 Analysis and Discussion

4.1 Survey of Measures
We have analyzed several major ER papers from different domains. We have ana-
lyzed the ER measures they use to get an insight of trends of use of ER measures.
Our survey consists of twenty-one ER papers and this analysis is shown in Table
2. We have analyzed a distribution of major papers from the major domains that
evaluate ER. These domains are databases, vision, natural language processing,
and machine learning. The table shows the individual ER measures used in each
paper.

We see that pairwise measures are one of the most used measures. As seen in
our survey, pairwise F1 is the only measure found in all four of the domains we
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Table 2: Table of measures

Paper Domain Year pF1 cF1 ccF1 MUC F1 B3F1 CEAF BMD
[16]

Databases

2008 3 3 - - - - -
[31] 2009 3 - - - - - -
[21] 2010 3 3 3 - - - 3
[14] 2010 3 - - - - - -
[25] 2011 3 - - - - - -
[12]

Vision

1999 3* - - - - - -
[5] 2006 3* - - - - - -
[10] 2008 3* - - - - - -
[32] 2011 3 - - - - - -
[17]

Natural

2010 - - - - 3 3 -
[26]

Language

2010 3 - - - 3 3 -
[28]

Processing

2010 - - - 3 3 3 -
[23] 2010 3 - - 3 3 - -
[8] 2010 - - - 3 3 3 -
[27] 2011 3 - - - 3 - -
[19]

Machine

2000 3 - - - - - -
[7]

Learning

2003 3 - - - - - -
[6] 2007 3 - - - - - -
[2] 2009 3* - - - - - -
[15] 2010 3 - - - - - -
[13] 2011 3 - - - - - -

Note: For the measures, we use pF1 to denote pairwise F1, cF1 to denote cluster F1, ccF1

to denote closest cluster F1, BMD to denote Basic Merge Distance.
3 denotes that the associated paper uses the associated measure
* uses pairwise precision and recall, but does not specifically use pairwise F1

surveyed. Pairwise F1 is also primarily the evaluation method used in Machine
Learning and Vision. This is likely due to the advantages we mentioned in Sec-
tion 3.1.1. Also, we have noticed that the vision domain performs ER in terms
of pairs of images or image frames. Because the application is in terms of pairs,
pairwise measures seem to be the most natural approach for evaluation.

MUC, B3, and CEAF are mostly used in the Natural Language Processing
domain. Precisely, these three measures are defined as measures with links that
resemble noun phrase references in the NLP domain. Cluster and closest cluster
F1 are newer measures This survey is only a small sample of the entire ER domain,
but it does give us some insight to the use of the measures we have analyzed. In
addition, some other measures that we have covered have been recently proposed.
Over time, we will know what the response is towards these newer measures.
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The database domain also has been using pairwise F1. However, there has
been newer measures in the database domain. These include cluster F1 and clos-
est cluster F1. In addition, there has been a push towards edit distance approaches
in the database domain. These edit distance approaches include BMD, Variation
of Information (V I) (not in Table 2), and GMD (not in Table 2). The proposal of
these newer measures by the database domain may show that the pairwise mea-
sures may not be a suitable or informative measure for the database domain. How-
ever, as we mentioned in Section 3.3, edit distance measures are newer measures
that aren’t widely used yet, and require more research.

4.2 Comparison of Measures
We have shown that there are several measures used to evaluate ER, and each is
a valid way of evaluating ER. In this section, we will show the differences, over-
laps, and trends of the measures based on an example shown in Figure 1. We will
also show additional disadvantages or advantages of the measures. This example
shows the ground truth of the experiment (Figure 1(a)) along with different ER
results (Figure 1(b) - 1(h)). The evaluation results using each of the major mea-
sures for each of the results in Table 3. Results 1, 2, and 3 essentially represent
the same result that are equivalent to the truth. Result 1 is a cluster representation.
Results 2 and 3 are the pairwise representations. Results 4 and 5 are represen-
tations of different minor false predictions which can lead to different evaluation
results. Results 6 and 7 show the two extremes of the results. One extreme is with
all the references predicted as the same entity. The other extreme is with all the
references predicted as separate individual entities.

Figure 1 describes the main example we will be using to compare the ER
measures. Figure 1(a) is the truth and consists of three clusters of references
which relate to individual entities. Figure 1(b) is the first result and is identical
to the truth. Figure 1(c) is the second result and consists of references that are
paired together. This second result is also identical to the truth and, thus, also
to the first result. The reason for this is that in the second result, there are pairs
between each of the references that relate to the clusters in the first result. As we
showed in section 2.1, a cluster is a set of references where each reference have the
transitivity relation between them. Because a cluster assumes transitivity between
references, in the third result, the pairs or links (r1, r2), (r1, r3), and (r2, r3) can
be shown as the cluster {r1, r2, r3}. Likewise, the second result consists of entities
which consists of references that have the transitive relation between them. We
can prove that the first result and second result are identical to each other and,
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Figure 1: Example 1 entities

thus, the truth by showing the results of each evaluation measure evaluated on
the results shown in the third and fourth columns of Table 3. As shown, the
precision, recall, and F1 are perfect for each measure. As shown in the results,
when the result is completely identical to the truth, each of the three categories of
the measures (pairwise, cluster, and edit distance) give identical or perfect results.
We will use the first result for comparison with other results since it is a complete
match with the truth.

Next, we will show a difference of pairwise measures from the other two types
of measures. For now, we can group cluster and edit distance measures because
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Table 3: Results for Example 1

Measures Results
1 2 3 4 5 6 7

pairwise
precision 1.000 1.000 1.000 0.548 0.438 0.250 0.000

recall 1.000 1.000 0.714 1.000 1.000 0.100 0.000
F1 1.000 1.000 0.833 0.700 0.609 0.400 0.000

cluster
precision 1.000 1.000 1.000 0.500 0.500 0.000 0.000

recall 1.000 1.000 1.000 0.333 0.333 0.000 0.000
F1 1.000 1.000 1.000 0.400 0.400 0.000 0.000

closest cluster
precision 1.000 1.000 1.000 0.800 0.750 0.375 0.375

recall 1.000 1.000 1.000 0.667 0.667 0.333 0.389
F1 1.000 1.000 1.000 0.727 0.706 0.353 0.382

MUC
precision 1.000 1.000 1.000 0.833 0.833 0.714 1.000

recall 1.000 1.000 1.000 1.000 1.000 1.000 0.000
F1 1.000 1.000 1.000 0.909 0.909 0.833 0.000

B3
precision 1.000 1.000 1.000 0.700 0.625 0.343 1.000

recall 1.000 1.000 1.000 1.000 1.000 1.000 0.375
F1 1.000 1.000 1.000 0.824 0.769 0.512 0.545

CEAF

φ3

precision 1.000 1.000 1.000 0.750 0.625 0.375 0.375
recall 1.000 1.000 1.000 0.750 0.625 0.375 0.375
F1 1.000 1.000 1.000 0.750 0.625 0.375 0.375

φ4

precision 1.000 1.000 1.000 0.875 0.833 0.545 0.208
recall 1.000 1.000 1.000 0.583 0.556 0.182 0.556
F1 1.000 1.000 1.000 0.700 0.667 0.273 0.303

BMD 1.000 1.000 1.000 0.857 0.857 0.714 0.286

Note: The reported BMD scores above are calculated as 1− actual BMD to give a more
comparative score with the other measures.

they both use clusters of references. Figure 1(d) shows the third result which is
similar but not identical to the third result. In fact, the third result is identical to the
truth and the first result. Again, this the truth is the cluster form of the third result.
Because a cluster assumes transitivity between references, in the third result, the
pairs or links (r1, r2) and (r2, r3) can also be shown as the cluster {r1, r2, r3}.
However, the third result is not identical to the second result. The third result does
not have the pairs (r1, r3) and (r6, r8) that the second result has. We can expect the
pairwise results of the third result to be different compared to the second result.
This is shown in the fourth and fifth columns of Table 3. Because the the third
result does not consist of all pairs that the second result consists of the pairwise F1

has decreased for the third result. As shown, the cluster and edit distance results
are the same as the first two results, because the cluster forms are the same for
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the three results. This difference shows that pairwise precision, recall, and F1 is
more sensitive to the exact pairs or coreference relations, while the cluster and edit
distance measures generalize a cluster to consist of references with the transitive
relations.

Next, we will show the differences between the cluster measures. We will
first show the difference between cluster F1 and the other cluster measures. If we
compare the fourth result (Figure 1(e)) with the truth or the first result. We can
expect all the measures to produce lower results compared to the perfect match
since five references are falsely predicted to be the same entity. The cluster F1 is
actually lower than all the other cluster measures along with the other two cate-
gories. The same holds for the fifth (Figure 1(f)), sixth (Figure 1(g)), and seventh
(Figure 1(h)) results. Cluster F1 looks for the exact matching clusters in the truth
and result. This property makes cluster F1 the strictest of the measures. However,
this can be a disadvantage as mentioned earlier. We can expect the fifth result to
have lower results compared to the fourth result because it false predicts six ref-
erences to be the same entity compared to the five in the fourth result. However,
both results have the same cluster F1 results because both correctly predict one
cluster. As shown in the results, most of the other cluster measures produce lower
results compared to cluster F1 in the fifth result compared to the fourth result. The
only exception is MUC F1 of the cluster measures and also BMD. We will talk
about these below.

Next, we will show the difference between MUC and B3 F1. The first differ-
ence is one of the main motivations of the proposal of B3, which we described
in Section 3.2.4. As we just showed that we expect the fifth result to have lower
results than the fourth result because six references are falsely predicted to be the
same entity compared to five. MUC F1, like cluster F1, produces the same results
for the two results.

There are some other interesting evaluation results present. If we look at Re-
sult 6, most of the measures have low scores, but BMD is still high with 0.714.
This is because Result 6 has merged all references together, and would require a
few merges. This can be disadvantage of BMD. When many references have been
falsely merged together, BMD would only require a few merges which would still
give a relatively high score.

4.3 Practical Considerations
Although there is no one perfect measure, we can give insight to which measures
to use or which measure not to use. We are not saying that any measure is better
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than the other. As we have shown in previous sections, each measure has its
advantages and disadvantages. We should point out that CEAF requires more
computation than other measures as mentioned in Section 3.2.5, while MUC and
B3, for instance, are relatively easy to compute. Pairwise F1 is especially easy to
compute, which may be one reason why it is widely used. Another point is that
there seems to be fewer applications of cluster precision, recall, and F1, because
it a very strict measure that looks for completely matching clusters.

As we showed in Section 2, there are many variants of many of the cluster
measures (B3, CEAF) to handle different types of results. This shows that some
of these measures are not perfect and there is constantly a need for newer variants,
which has lead to recently proposed measures. In our survey, we have seen that
pairwise measures are the most used measures. There is an immense amount of
new research in ER evaluation which is expected to continue. We expect several
new evaluation measures to be proposed. We believe there will not a standard
measure for ER evaluation. Rather, there are more application or domain based
measures. With more ER measures being proposed, we expect that ER evaluation
will be even more application based, and there would be a specific measure for
different applications. Also, we have seen that usually more than one measure
is used to evaluate ER results. We believe that this method of evaluation will
continue even though there will be more application specific measures. The reason
for this is that each measure evaluates differently and evaluation shouldn’t rely on
just one measure.

5 Conclusion
With the increasing amount of research in ER in several domains and many newly
proposed ER evaluation measures, there is a strong need of a guide of several
widely used and newly proposed ER measures. We have provided an analysis on
many major ER evaluation measures in order to guide future ER work in a variety
of domains. There have been other surveys of ER measures, but they have been
more domain specific (NLP [8] or Databases [21]). We give an overview of the
evaluation techniques in the main ER domains to give a total or wider overview
of ER. We have not analyzed every ER evaluation measure ever used, but we have
analyzed the most used measures and newly proposed variants of those measures.
These newly proposed variants are very promising, but we believe that with the
increasing number of variants, there will eventually be a range of application spe-
cific measures. Nevertheless, some measures, such as GMD, have been proposed
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to become a fundamental way of evaluating ER, however, we believe that the use
of multiple measures is still required in order to analyze evaluation results from
different measures.
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