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Abstract

Location-based social networking services (LBSNs) provide an alternative form of gathering massive
amounts of mobility data applicable to various fields of research that require human activity surveillance.
This paper examines the relationship between locations extracted from observed patterns of LBSN usage
and the effectiveness of the resulting network in tracing geographical spread of an infectious disease.
Our results show that location connections formed through LBSNs demonstrate a reasonable approach
in modeling trends in human mobility.

1 Introduction

The increasing prevalence of smart phones, tablets, and other mobile web devices has spurred a surplus
of applications that track real-time geospatial user activity. Location-based social networks (LBSN), such
as Gowalla ! and Foursquare 2, allow users to share their whereabouts with friends and connect with new
people of similar interests. These virtual communities yield large-scale datasets revealing a high resolution
view of human mobility. In this paper, we study the potential use of the underlying structure of LBSNs for
modeling the spread of an infectious disease within the United States. Disease dynamics may be generalized
to encompass a wide variety of symptoms or tailored to a specific set of parameters for a particular contagion.
We fit our model to simulate the transmission of the influenza virus.

Influenza ranks among the ten leading causes of death in the United States [28]. About three to five
million severe cases are reported annually that lead to roughly 250,000 to 500,000 deaths worldwide [29].
The economic impact of a seasonal influenza epidemic costs an estimated total of $87.1 billion in the US
every year attributed to medical costs, loss of earnings due to illness, and total deaths [19]. Vaccination is
the most effective preventive measure against individual infection and epidemics [22]. However, the rapid
evolution of its viral structure requires the vaccine’s viral components to be updated regularly based on
the recommendations of the World Health Organization (WHO) Global Influenza Surveillance Network.
The selections are evaluated to match currently circulating strains, as well as emerging variants [12, 21].
However, due to manufacturing and regulation constraints, updated vaccines could take five months to a
year to become available for mass distribution [1]. If a new strain emerges after the selection process ends,
the vaccine may only provide partial immunity increasing the risk for a widespread pandemic.

Effectively predicting the spread of disease is crucial in minimizing seasonal epidemics and preventing
a global pandemic. Several models have been developed to simulate the transmission of infections in a
population. The susceptible-infected-recovered (SIR) model, introduced by Kermack and McKendrick in
1927, provides a generic mathematical approach to modeling epidemics. SIR assumes a population that
is initially equally susceptible to a disease. Once an individual becomes ill, the disease spreads from the
infected to the susceptible. Each infected person eventually retires from the infected stage either through
recovery from illness or death [25]. The model has since been extended to take more complex forms. A
contact network model provides a more realistic view of the dynamically changing interactions within a
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heterogenous population [27, 36]. Instead of assuming that the transmission probability is constant for all
person-to-person contacts, the dynamic contact network allows asymmetrical transmission patterns that
effectively represent higher risk subpopulations as well as variances in daily interactions.

Mathematical models tracing geographical spread of disease present a spatial view of epidemic progression
[31, 32]. This feature is particularly important in identifying vulnerable regions in the case of an outbreak
wherein necessary response strategies, such as school closings, travel restrictions, and quarantine, must be
enacted. Airline travel is widely studied as the greatest facilitator of inter-regional influenza transmission
[24, 4, 14]. The sharp increase in travel volumes and speed of inter-continental transport have had a significant
influence on the spatio-temporal pattern of influenza transmission [4]. Airline flight itineraries are popular
sources of mobility data. However, models based on this data set alone have several limitations. For example,
air transportation generally covers only long-distance excursions. As a result, shorter range movement from
other modes of transportation would be excluded [14, 24]. Mass gatherings, such as sporting events, or local
social venues wherein a diverse group of people come into contact with each other are also not taken into
consideration.

Alternative methods of representing human contact and mobility include telephone records, standard mail
and courier services, financial transactions, and migration patterns [30]. Each has its strengths but often fail
to capture some essential element that characterizes human behavior. The structure of offline social networks
has shown great potential in replacing traditional contact network models for SIR disease simulations. A
study on a flu outbreak at Harvard College showed that individuals at the center of a social network tend
to acquire infections earlier and are more likely to spread the infection to their friends [8]. These nodes act
as early detection sensors of an emerging outbreak and should be prime targets for vaccination. Collecting
data for a similar contact network and observing the flow of infection on a global scale is a daunting, if not
impossible, task. Thus, we propose an alternative method for simulating geographical disease propagation
through user-provided activities with local and temporal detail.

Online social media boasts a rich collection of observable activities voluntarily and openly shared by its
users. However, the application of online behavior to realistic events, as in person-to-person contact, is not
directly obvious. Due to the global scope and accessibility of web applications, online usage appears to have
the ability to transcend physical and geographical barriers. In tracing social contact, such intuition implies
that online social networking sites do not effectively represent actual physical contact between its users.
Nevertheless, research exploring comparisons between online and offline social networks have found that
physical proximity, travel patterns, national borders, and common language all exhibit significant influence
over which connections are formed in online social networks [9, 35].

Recent studies have employed online social media to track influenza-related content in Twitter tweets
[6, 11, 13, 26, 34], Facebook status updates [13], blog posts [15], and Google search queries [18]. Through
mining and analysis of vast amounts of online traffic, these portals serve as real-time surveillance systems that
are able to monitor and predict flu level trends and the possibility of an emerging epidemic. Communication
patterns between YouTube users have been used to substitute human interactions in simulating the 2009
HIN1 epidemic [30]. The results show that simulations on the YouTube-based network were able to predict
the first day of incidence in each country better than estimates from air traffic data. However, projections
for the total number of cases are less accurate and underestimates the actual number of incidences. Merging
the advantages of utilizing user-generated content and social contact networks derived from online social
media, we look at the unique attributes of LBSNs and the potential application in disease simulation.

Advancements in web-based mobile technology have boosted the popularity of “apps” that encourage
users to share their daily experiences with staggering detail. Facebook, Foursquare, and Gowalla are only a
few of the numerous applications that exploit the ease of capturing precise time and coordinates in recording
user activity. LBSNs have recently been garnering attention in fields of research related to human mobility
and activity patterns [7, 2, 20], friendship prediction [9], link prediction [33], and recommendation systems
[3]. These studies reveal promising results in tracing user mobility and online behavior. Our work focuses on
extracting a location-based contact network from large volumes of fine-grained data gathered from LBSNs
to model real-time physical social events, such as the transmission of disease.

Results from our simulations approximate the geotemporal spread of influenza during the 2009 H1N1
epidemic. We observe that transition probabilities between cities in our Gowalla network model play an
important role in estimating the variation of disease incidence across different regions. Our model can
be applied in tracing human movement while observing the frequency and timing of user activities that



Table 1: Sample Data

City State Longitude Latitude Time

San Jose CA -121.89 37.32 2010-06-21 13:21:19
Philadelphia ~ PA -75.02 39.94 2010-06-21 13:59:58
Minneapolis MN -93.24 44.85 2010-06-21 14:09:13
New York NY -73.61 40.73 2010-06-21 14:49:06
New York NY -73.98 40.72 2010-06-21 16:21:48
San Francisco CA -122.40 37.78 2010-06-21 16:27:12
New York NY -73.61 40.73 2010-06-21 19:26:03

contribute to infection spread. Through a close examination of LBSN use, our model captures the overall
travel patterns of its users at both local and long-distance levels.

2 Methods
2.1 Gowalla Check-in Network

Gowalla is a mobile social networking service where users submit location information to connect with friends,
log daily routines, and share exciting new places they are visiting. A check-in is created when a user posts
information about his current location. A spot is a specific place or venue, such as a restaurant, a park, or
an airport. Check-ins are annotated with the spot name and location, user name, date and time of check-in,
as well as optional user comments and photos.

We obtain our data set of 9 million check-ins from Berjani and Strufe [3], originally crawled using the
Gowalla API. The data consists of check-ins from spots located in the US from February 2009 to October
2010. It includes field values for user ID, location ID, timestamp, and the latitude and longitude coordinates
of the place of check-in.

The data is transformed to follow a set of conventions useful in developing our model. To standardize the
collection of cities, a list of the most populated US cities with the corresponding geographical coordinates
was obtained from the US Census Bureau [5]. The average distance of a spot’s coordinates to its listed city’s
coordinates is 9.07 miles with a standard deviation of 26.48 miles. If a spot is registered to a city that is
not on the census list, the entry is updated with the closest listed city with a mean distance of 26.70 miles
and standard deviation of 24.03 miles. Gowalla logs a timestamp for a check-in based on the local time on
the device used. In order to obtain a chronological sequence of check-ins, we update all timestamps to be in
Eastern Standard Time.

Under the assumption that each check-in reflects a user’s location at the specified timestamp, we observe
a discrepancy regarding the check-in history of certain users. For example, Table 1 shows the activity
of a single user on June 21, 2010 with check-ins between distant cities that are only within a few hours
apart. The fastest plausible mode of transportation is by commercial airplane, which travels approximately
600mph on average. However, a small subset of users have apparently had the ability to register check-ins to
multiple distant places faster than the expected physical travel time. Another Gowalla data set [7], gathered
during the same time period, exhibits similar issues. The problem may be due to flaws in Gowalla’s logging
implementation, special user privileges, or perhaps a glitch during the crawling process. Nevertheless, this
pattern occurs for only 0.3% of the total users so we eliminate these users’ activities from our sample.

We find that the number of check-ins from Austin, TX is more than double the number for the second
most frequently checked-in city (New York, NY). We attribute this to the fact that Gowalla’s headquarters
are located in Austin and possibly have a strong influence over the use of the service within its home city.
To adjust for this bias, we look at the three US cities that have the closest population size to Austin —
San Francisco, CA, Columbus, OH, and Indianapolis, IN. We define city,, to be the number of users whose
majority of check-ins are in city and compute the average ratio between the number of users from Austin
and the number of users from other cities:
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We use 7 in the next section to scale down the impact of Austin users to be roughly proportional to users in
similarly populated cities in constructing our location-based contact network.

2.2 Weighted City-to-City Contact Network

We formulate our contact network by observing the path of cities visited by each user. Let C' be the set

of nodes for each US city and let E be the set of weighted directed edges representing transfer connections

between cities. For every pair of city nodes ¢; and ¢; in C, let e; ; = (c;,¢j) be the directed edge between

these nodes. Let U be the set of all users, then for u € U, L, = [cs, ..., ¢, is list of check-ins such that cs,
, ¢ are the cities visited by user u in chronological order. For every e; ; € E, we compute its weight,

w(e; ;) = €+ (# of consecutive occurrences of ¢; and ¢; in L,,, u € U) (2)

Let U, be the set of users whose majority of check-ins are located in Austin. Then for u, € U,, the weight
for each consecutive ¢;, ¢; in L,,, is scaled by 7 from equation 1 when added to w(e; ;).

The result is a strongly connected graph with 501 nodes and 251001 weighted edges. A transition
probability matrix, T, is constructed such that T'[i, j] denotes the probability of moving from city ¢; to city
Cj.

w(ei;)

T[i,j] = w(es) where w(e; .) is the sum of the edge weights leaving city ¢ (3)

2.3 Contact Probability Distribution

The rate of disease propagation from a single person is directly correlated with the number of people an
infected individual interacts with. The number of contacts fluctuates from person to person every day
while the exact definition of what constitutes sufficient physical contact to transmit an infection varies
for different diseases. There are currently limited sources of social contact data applicable for infectious
disease transimission. One of these include an investigation of how social contact patterns influence the
temporal spread of influenza. The study conducted a survey to determine the daily number of physical and
conversational contacts for each participant [16]. They observed that lower contact numbers during school
holidays coincides with decreased influenza incidence rates and that the timing of school sessions promoted
the spread of the 2009 HIN1 epidemic. We use the survey data from this study to determine how many
contacts a sick individual will attempt to infect in our simulation.

2.4 Model Dynamics

Our disease simulation follows an extended SIR model featuring an additional compartment, latent, which
differentiates a subgroup of the population who have been exposed to infection but are not yet able to
transmit the disease [24]. Figure 1 shows the transitions between and within each disease stage. When a
susceptible individual contracts an infection, he transitions from S to a latent phase L which could last up
to 3 days. We define L; ; as the i'" stage out of j total days of latency, where i = 1,...,j and j = 1,...,3.
After the Lj’jth stage, the individual transitions to one of I j, where k& = 1,...,10, as the first stage of
infection of up to k total days. As he reaches the final day of infection at I, he finally moves to R and
recovers.

Seasonal factors affecting an influenza epidemic causes a periodic peak and decline in the number of
incidences each year. Cases are usually higher during the colder months of the winter when people are more
likely to stay indoors and decrease as the temperatures become warmer during the summer. To account for
the seasonal variability in the rate of infection, we apply a sinusoidal function to the transmission probability
as determined by Edlund et al [17].
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Figure 1: SLIR Disease Model.

Table 2: Simulation Parameters
Parameter Definition

init initial distribution of infected individuals for all cities
pop population distribution for all cities

steps number of time steps to run simulation

city list of cities in network

contacts contact probability distribution

p disease transmission probability

T city transition probability matrix

max_lat maximum latency period

max_inf maximum infectious period

Table 3: General Procedures

Procedure Definition

GenAgent() generates a new agent
Seasonal(t) sinusoidal function of time t
Infect(x) returns True with probability x

NextCity(T, ¢;) returns a city ¢; with probability T[i,j]

2.4.1 Implementation

The simulation is executed with parameters and procedures listed in Tables 2 and 3. A distribution of in-
fluenza incidences per state is selected from Google Flu Trends data [23] to seed the simulation. The number
of infected individuals in a state is randomly distributed among its cities for all states to obtain init. The
overall population distribution among all cities in pop is acquired from the US Census Bureau [5]. Both init
and pop are arrays of integers whose indices correspond to cities. Simulation initializes the set of agents for
each disease compartment, S, L, I, R, and determines the length of infectious period for each infected agent.
A call to Spread updates all sets of agents at every time step.

SIMULATION(init, pop, steps)
1 S,L,1,R« 0
2 for i + 0 to len(city)
3 do
4 for n < 1 to (popli] — init[i])



5 do agent + GenAgent()
6 agent.city + cityli]
7 agent.pd < 0
8 S.add(agent)
9 for n < 1 to init[i]
10 do agent < new agent
11 agent.city + cityli]
12 agent.pd < random(1, max_inf)
13 I.add(agent)
14 for t + 1 to steps
15 do SPREAD(p, contacts, T, maz_lat, max_inf,t)

Spread simulates the transmission of disease from agents in I to agents in S. An infected agent comes
into contact with ¢ individuals, randomly chosen from contacts. The agent attempts to infect ¢ susceptibles
in its current city ¢; with season-influenced transmission probability Seasonal(p,t) then updates its location
according to the city contact network. The remaining latency and infectious period for each agent in L and
I, respectively, are decremented to reflect the changing state of infection as time passes. Once the remaining
period reaches 0, the agents transition toward the next phase (L — I or I — R), and the infectious period
for each previously latent individual is set.

SPREAD(p, contacts, T, max_lat, maz_inf,t)

1 for agent in I
do ¢ + random(contacts)
3 for k< 1toc
4 do if Infect(Seasonal(p,t))
5 then infected_agent < S.get Agent FromSameCityAs(agent)
6 infected_agent.pd < random(1, mazx_lat)
7
8

[\

S.remove(in fected_agent)
L.add(infected_agent)

9 agent.city < NextCity(T, agent.city)
10 agent.pd < agent.pd — 1
11 if agent.pd < 0
12 then I.remove(agent)
13 R.add(agent)

14 for agent in L
15 do agent.pd < agent.pd — 1

16 if agent.pd < 0

17 then agent.pd < random(1, maz_inf)
18 L.remove(agent)

19 I.add(agent)

The procedure implements each set of agents, S, L, I, R, as vectors with the number of agents in each
city. The vector for L is further subdivided such that L = {L;;} fori =1,...,j and j = 1,..., maz_lat.
Similarly, I = {Ij;} for k =1,...,l and | = 1,...,maz-inf. The counts on all vectors are iterated over
to simulate the actions for each agent and updated as events unfold. Our simulations run for 365 time
steps with varying p values and seed init with random pre-flu season estimates from Google Flu Trends. A
simulation outputs a steps X len(city) matrix, M, that contains the number of infected agents at each time
step for every city on our network.

2.5 Comparing with Google Flu Trends

Google Flu Trends approximates the proportion of influenza-like illness (ILI) cases from aggregated flu-related
queries on the web [23]. The study [18] revealed that the frequency of certain ILI-related search terms match
the seasonal fluctuation of influenza reports indicating a good predictor for flu activity across various regions.



The Centers for Disease Control and Prevention (CDC) provides weekly surveillance reports with FluView
based on observed ILI-related outpatient visits [10]. However, data collected for the surveillance system can
be delayed by up to a few weeks. Google Flu Trends offers daily estimates of flu activity by monitoring
the occurrences of ILI-related search terms. They tested the top 50 million queries in their database and
developed a linear model that produced a mean correlation of 0.9 with CDC observed ILI reports.

We compare our results with Google Flu Trends’ weekly US influenza estimates from September 2003
to May 2012. The counts of infected agents in M are summed every seven days to obtain a 52-week tally
normalized by each state total. These are evaluated against every 52-week subset of the Flu Trends data to
find a closest match. A score for each pairing is determined by computing the average Fuclidean distance,
d, between corresponding column vectors for each state in the two matrices. The lowest distance matchings
are evaluated on a state-by-state level for further analysis.

3 Results

Simulation results for the Gowalla network model fit closest with Google Flu Trends estimates for May 2009
to May 2010 with d = 0.22. We find that our model approximates the timing and activity levels for each
state in the continental US throughout the flu season, with the exception of Alaska, Vermont, West Virginia,
and Wyoming, for which the Gowalla network did not include any check-in data. We developed two baseline
comparison networks to evaluate the strength of our model. The first is a permuted version of the Gowalla
network wherein a random permutation of the probability vector for a city’s connections to all other cities is
substituted in the transition probability matrix T" for all cities. The other is a randomized contact network
which draws a random value from a Gaussian distribution as the probability that an agent will move from
one city to another. Simulations using the same initial parameters as the Gowalla network results in d
values for the permuted and random networks of 0.24 and 0.83, respectively, when compared with Google
Flu estimates during the same flu season.

Figure 2 exhibits weekly influenza activity heat maps for Google Flu data and the simulation results for
the Gowalla model, permuted, and randomized contact networks. The x-axis lists the 52-week simulation
period while the y-axis lists the US states observed. Values for each tile are obtained from the percentage of
total incidences for a state at a given week normalized across all states for that week. The weekly heat map
estimates a general trend of how the activity levels of each state influence the prevalence of flu on a national
level. The Gowalla network model follows a similar pattern of varying flu levels for each state throughout the
year as Google Flu. The permuted network shows little variation while the randomized network is mostly
uniformly distributed.

Meanwhile, Figure 3, displays a geographical snap shot of flu activity across the US for the four different
sets. The geographic heat maps show the relative distribution of influenza incidences across the region for
the week of October 11, 2009. Google Flu and Gowalla network highlight different states with high activity
but follow a general overall distribution of the various ranges of flu levels. As evident in the weekly heat
maps, the permuted and randomized networks show a much limited distribution of values in comparison.
Specifically, the randomized network exhibits a sparse distribution of incidences for only a few select states.
The results entail that the Gowalla network model has an observable impact on the geo-temporal spread
of disease. The actual distribution of which state induces increased prevalence on another state differs as a
result of bias with the manner of Gowalla service use which may distort the representation of certain states.

The overall proportion of incidence during the 52-week period, shown in Figure 4, exhibits high corre-
lation between the three simulated models, with Euclidean distances of less than 0.05 from each other and
approximately 0.14 against Google Flu. The pattern may be due to the applied seasonal factor varying
the transmission probabilities over time with a sine wave function. This indicates that the total incidences
on the national level is unaffected by the city-to-city transition probabilities since individual contact and
transmission rates are sampled from the same distribution.

4 Discussion

Our observations demonstrate that the Gowalla network model approximates the geographical propagation
of disease as a consequence of human mobility patterns. The location-based contact network relies on the
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Figure 2: Week-by-week Heat Maps.
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Although the model uses a unique measure of movement through LBSNs, our results show that the transition
probability distribution computed from our network is indicative of actual travel probabilities influenced by

the network using established disease model parameters to determine spatio-temporal epidemic progression.
local and long-distance transportation methods.

check-in activity of Gowalla users to detect movement from place to place. Infection spread is simulated over

It is worth noting that the Gowalla state-by-state distance comparisons against Google Flu estimates bgst
match the 2009 HIN1 flu pandemic. This suggests that our model may be more appropriately used for high

incidence disease outbreaks than seasonal epidemics. The disease parameters used may have played a role
in the emergence of such performance, however, the random and permuted networks that incorporated ‘Fhe
same parameters did not display the same behavior. If the model is updated to reflect better representation

of regional activity through the use of larger and more up-to-date collections of check-in information, our
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simulations may be able to provide real-time metrics for user mobility and contact.

Location-based social networks offer intriguing insights into the mobility pattern of its users. It demon-
strates behavioral trends through the timing and frequency of check-ins to favorite spots and visits to new
places. The large-scale availability of such information provides an interesting alternative to tracing human
activity. However, the power and shortcomings of the data lie on its dependence to self-reported user activity.
On one hand, it allows people to conveniently record accurate details of day-to-day excursions. Instead of
relying on recalling a busy day’s worth of commute when filling out survey forms, one can simply press a
button on a device that is always at hand. However, the types of individuals that these services cater to
may be limited to a particular niche. Although the use of these applications has grown dramatically over the
last few years, there remain large sections of the population that are excluded from LBSN data sets. Older
generations may not be accustomed to using new technologies and younger children have yet to acquire
sole access to these gadgets. Regardless, LBSN captures an essential element of human behavior that is
lacking on conventional surveillance methods thanks to its unique ability of reporting immediate and precise
information regarding a user’s whereabouts.
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