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Game Mechanics
Minesweeper is a game in which the player must correctly deduce the positions of 

mines in a minefield. The minefield is represented by an m by n grid. The cells of the grid 

are referred to as locations and this grid of locations will henceforth be referred to as the 

board. Each location has two states, open or not open, as depicted in Figure 1. 

Additionally, each location has a numeric value in the range 0 – 9 associated with it. A 

value of 9 denotes that the location harbors a mine.* The values 0 – 8 denote the number 

of mines that are in the location's neighborhood, where a location's neighborhood is 

defined to be the eight locations that touch it.† It is important to note that a location's 

value is not known to the player until the player opens that location. However, should the 

* The use of the number 9 here is simply a convention, any value other than 0 – 8 could have just as easily 
been used. In the figures a mine icon is used instead of the number 9.

† Note that this is the equivalent of the Moore Neighborhood in Cellular Automata research.
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Figure 1: Not Open and Open
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Figure 2: Three and five mine border configurations
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player open a location with value 9, the player is said to have triggered a mine and 

therefore loses the game. Thus an alternate way to state the goal of the game is to say that 

the player must open all locations with values in the range 0 – 8 and no locations with 

value 9.

Game Play
When a new game is created the player is presented with an m by n board with b 

locations harboring mines. The mines are distributed such that all locations have an equal 

probability of harboring a mine. Initially none of the locations on the board are open, thus 

the player knows nothing of the positions of any of the mines. The game is played as a 

series of steps, at each time step the player must choose one location to open. If a player 

opens a location that contains a mine then the game is over. However, if the player opens 

a non-mine location they learn the location's value and can use that location's value to try 

to deduce the positions of other non-mine locations. At each time step the player also 

knows the size of the board, the number of mines on the board, and the values of all open 

locations. Finally, in most implementations, players are permitted to note which not open 

locations they believe are mines, see Figure 3. This gives the player the opportunity to 
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Figure 3: Marks
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store information on the board that would otherwise have to be recalculated each time a 

location was encountered. Minesweeper is a game of information, the more information 

that is available to the player at each time step, the more likely it is that they will be able 

to find the next non-mine location.

Game Strategy
A typical game of Minesweeper is played on a 16 by 30 board with 99 mines. 

Thus the probability that a given location contains a mine is roughly .20. Suppose one's 

strategy was to simply open locations at random on this 16 by 30 board. Then one would 

have a 79% chance of choosing a non-mine on the first step, 79% on the second, 77% on 

the fiftieth, and 74% on the hundredth. However, one's chances of opening one hundred, 

or roughly a quarter, of the non-mine locations consecutively would be roughly one in 

one hundred billion. Clearly a better strategy is necessary.

Truth
Truth is the most basic strategy that a typical player uses during a game of 

Minesweeper. It involves analyzing a given location L to determine whether the locations 

in its neighborhood must be all open, all marks, or neither. More precisely, if L is open 
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Figure 4: Neighborhood safe to open
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then the value v of L is known and therefore the number of mines in the neighborhood is 

known. If the number of marked locations in L's neighborhood is equal to v then any 

remaining not open locations can be safely opened, see Figure 4. Alternatively, if v minus 

the number of marks is equal to the number of unknowns then the unknowns have to be 

mines, see Figure 5. Finally, if neither of these conditions are true then nothing can be 

determined about L's neighborhood. This result should be obvious to Minesweeper 

players of almost any aptitude, but it is so fundamental to solving the puzzle that it is by 

far the most heavily used of the five algorithms. It is also very fast, the algorithm must 

only examine the eight neighbors of the location L to determine what, if any, conclusion 

can be drawn.

Contrapositive
Contrapositive is a slightly more complex algorithm. It is based upon the logical 

axiom known as modus tollens. Modus tollens states that if p implies q then not q implies 

not p. Accordingly, Contrapositive makes an assumption about the placement of a mark 

and then checks the implications of this assumption. If the assumption forces the board 

into a contradiction, such as a location having too many mines, then by modus tollens we 
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Figure 5: Neighborhood must be mines
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know that the assumption was false. More specifically, contradiction chooses a location L 

and places marks in its neighborhood so as to fulfill its mine requirement. It then applies 

the truth algorithm to L, but instead of opening any of L's neighbors it only notes those 

positions as being open and treats them as if they were really open although their value is 

not discovered. Then truth is applied in the same way to each neighbor of L whose value 

is known. This process continues recursively until a contradiction is discovered or all 

neighbors have been exhausted. If a contradiction is discovered then the original 

assumption must be false, and therefore the location that was marked must be safe to 
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open, see Figure 6. In this process Contrapositive may make up to eight assumptions and 

execute the Truth algorithm on up to n locations for each assumption it makes, where n is 

the number of locations in the board. Unfortunately if the assumption does not result in a 

contradiction then nothing is learned about the true value of the assumed mark, but the 

same number of locations must be examined. 

Exhaustion
The third algorithm, like the contrapositive algorithm, tests assumptions to try to 

find out information about the board. Exhaustion works by identifying all valid mark 

configurations for a given location and examining the neighborhoods for similarities, in 

other words it exhausts all possibilities. Given a location L generate all possible mark 

configurations that complete the mine requirement for L, see Figure 7. For each mark 
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Figure 7: Enumerate possibilities
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configuration C apply the truth algorithm to L as in the contrapositive algorithm. That is, 

note any neighboring locations that would be opened, but do not actually open any 

neighbors. Then apply this technique to each of L's neighbors. Continue recursively until 

all neighbors have been checked or a contradiction is found, see Figure 8. If no 

contradiction is found add C to the set of valid configurations. When each mark 

configuration has been analyzed for validity, examine each unknown neighbor N of L.  If 

the corresponding location in every valid mark configuration is not marked then N must 

be safe to open. Conversely, if in every valid mark configuration a neighbor of L is 

marked, then N must be marked, see Figure 9. Like Contrapositive, this algorithm has a 

running time bounded by the product of the number of assumptions and the number of 

locations that must be examined. However Exhaustion is much more intensive because 

the number of assumptions is given by m choose u, where m is equal to the number of 

mines needed to satisfy L and u is the number of unknown neighbors of L. 

Burnout
Burnout, unlike the first three algorithms, is not targeted at one particular location 

on the board. Instead burnout tries to find a minimal mark configuration that satisfies all 

remaining unsatisfied locations. If the minimum number of marks necessary to satisfy 

these locations is equal to the number of remaining marks then any unknown location 
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Figure 8: Check Validity
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beyond the neighborhoods of these unsatisfied locations most not have any mines. Given 

a board with unknowns, choose a location L that has unknowns in its neighborhood. 

Define a function f to return the minimum number of additional marks needed to satisfy a 

board. If the parameter to f is a board with all locations satisfied f returns zero. Then if we 

consider each valid mark configuration of L to be a separate board, the minimum number 

of mines needed to satisfy the original board is given by L minus the number of marks in 

L's neighborhood plus the minimum over all valid mark configurations C of f(C). 

Consider the bottom left corner of a Minesweeper board for which there are only 

two marks remaining. If the minimum number of mines required to satisfy this board is 

equal to two then it may be possible to find more locations that are safe to open. To 
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Figure 9: Look for similarities
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determine the minimum number of additional marks needed, we select a location L that is 

unsatisfied, Figure 10 represents such a situation (the selected location L is denoted with 

a red border). Begin by choosing a valid mark configuration for L, then find the minimum 

number of mines needed to satisfy that board by selecting an unsatisfied location L', see 

Figure 11. Then choose a valid mark configuration for L' and find the minimum number 

of mines needed to satisfy that board by selecting another unsatisfied location L''. 

Continue recursing in this manner until no more unsatisfied locations remain. If one of 

the unsatisfied locations has multiple valid mark configurations try each one before 

returning. This process builds a tree containing all possible mark configurations for the 

board, see Figure 12. This is, by far, the most intensive algorithm, in order to generate all 

possible mark configurations it must enumerate m choose u mark configurations for up to 
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Figure 10: Bottom left corner with L selected

Figure 11: Bottom left corner with L satisfied and L' selected
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Figure 12: Mark configuration tree
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n locations where m  is equal to the number of mines needed to satisfy L and u is the 

number of unknown neighbors of L and n is the number of locations in the board. As a 

result this algorithm, unlike the previous three, will typically take a couple of seconds to 

execute and will sometimes take upwards of ten seconds to execute.

Game Difficulty
Minesweeper is undoubtedly a difficult game to win, but because there are no 

record keeping facilities built in to the game it is difficult to obtain any sort of meaningful 

quantification of Minesweeper's difficulty. If a large set of game outcomes could be 

obtained then a plethora of different metrics could be computed the least of which being 

the probability of winning a game. But in order to generate such data sets something 

would have to play hundreds of games of Minesweeper and keep track of the outcomes. A 

human-like, but fully automated minesweeper player would be ideal for an investigation 

of this kind.

Such a player has been constructed by utilizing the four strategies detailed above. 

The automated player, or MineBot, attempts to solve a game of Minesweeper by applying 

the four strategies in ascending order of complexity. The MineBot, therefore, begins by 

applying the truth strategy to every location on the board. If, over the entire board, truth 

fails to reveal at least one safe location or place at least one mark then MineBot considers 

the strategy to have failed. When a strategy fails MineBot switches to the next least 

complex strategy which is contrapositive, in this case. If contrapositive fails to yield any 

progress from any location on the board MineBot will apply exhaustion and if exhaustion 

fails MineBot will apply burnout. Finally, if burnout fails MineBot simply opens one non-

12



open location at random. However, if any one of these strategies succeeds in identifying a 

mark or opening a location then MineBot switches back to the least complex strategy and 

begins the search anew.

Using my MineBot I performed three experiments: The first investigated the 

difficulty of an expert game, 99 mines on a 16 by 30 grid, the second investigated how 

the difficulty changes as the number of mines increases on a board with fixed dimensions, 

and the third investigated how the shape of the board changes the difficulty of a game 

when maintaining the same number of mines. 

Experiment One

An investigation of the difficulty of solving a standard expert board: 99 mines on 

a 16 by 30 grid.

Hypothesis

I hypothesized that Minesweeper was a very difficult game to win consistently. I 

knew from my own experience playing the game that successfully solving the board was 

difficult and that the difficulty arose from the guesses that Minesweeper players often 

make. Every player is forced to make at least one guess, and that is choosing the first 

location to open. When choosing this location one has a 99 in 480, or approximately a 

20% chance of failing. Thus no player can possibly win very much more than 20% of the 

games in a large data set. Also there is usually at least one more guess later in the game 

that offers a 50% chance of failing. Thus I hypothesized that an expert player should be 

expected to win roughly 10% of its games.

Method

The experiment to quantify the difficulty of a game of Minesweeper was very 
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simple, I merely set up the MineBot to play 500 expert boards and recorded the outcome 

of each game. My goal was to obtain a large sample of outcomes from which I could 

reliably derive the chance of winning a single game by dividing the number of games won 

by the number of games played, this is called the win rate.

Results

Using the MineBot a win rate of 5.6% was observed on the expert board 

configuration. 

Conclusion

The MineBot's win rate was surprisingly low. This means that either the MineBot 

is flawed, it is missing a technique, or that my estimated win rate was too optimistic. 

However the MineBot never loses except when it is making a guess, thus it must not be 

flawed in a way that causes it to incorrectly identify mines. The only other flaws that can 

exist involve not utilizing all the information from the board that is available and this is 

equivalent to the MineBot missing technique. The possibility of the MineBot missing a 

technique can be tested by allowing a human to play wherever the MineBot would 

normally have guessed. If the human/MineBot team still fails to achieve a win rate closer 

to 10% we can assume that the MineBot is at least as good as the human and therefore 

that the no techniques are missing. Then the only remaining conclusion would be that the 

estimate was too optimistic.

Experiment Two

 An investigation of the change in difficulty as a result of changing mining 

densities on a fixed board size.
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Hypothesis

I hypothesized that increasing the number of mines would increase the difficulty 

and that as the number of mines increased there would be a point at which the number of 

wins would suddenly drop off. In other words that, at a certain number of mines, the 

board becomes much more difficult to solve than it was previously. I refer to this point as 

the crystallization point.

Method

In order to test this hypothesis it was necessary to obtain measurements of the 

difficulties of a range of different board configurations. Originally the experiment was set 

up to run on boards of width 1 to 21 with 0 to 100 mines, at 5 mine intervals with 50 

trials per configuration. However the data from this experiment contained many outliers. 

In an effort to smooth out the data  more trials were added per configuration and the 

intervals were narrowed. But even with 200 trials per configuration and intervals of 2 

mines there was no significant improvement in the data. In fact the only significant 

change was the running time, which increased dramatically. Due to this dramatic increase 

in processor time the experiment was restricted to boards of width 1 to 21 with 0 to 100 

mines, at 5 mine intervals with 100 trials per configuration. One final tweak was made to 

include mine densities up to 150 mines to force the MineBot to have a consistent 0% win 

rate for all board shapes.

In addition to win rate another metric called average found rate was introduced for 

each set of trials. Average found rate was calculated by averaging the found rates for each 

trial, where the found rate for a trial was computed by dividing the number of mines 

identified by the total number of mines on the board. The purpose of adding average 
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found rate was to ensure that the inconsistencies found in the win rate were not caused by 

that metric but were inherent in the game, if average found rate showed similar 

inconsistencies then the win rate metric itself could be ruled out as a possible cause of the 

outliers.  

Results

Plots of the two metrics show a linear decrease in win rate and average found rate 

between 30 and 110 mines. Between 0 and 30 mines there is a short lead-in period where 

the slope of the metric increases, that is, the difficulty is increasing at an increasing pace. 

Between 110 and 150 mines there is a similar lead-out period where the slope of the 

metric decreases, the difficulty increases at a decreasing pace. See Illustration 1.
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Conclusion

The statistics gathered by the MineBot failed to show any evidence of a 

crystallization point. Instead they showed that, in general, difficulty increases roughly 

linearly with an increase in the number of mines. The shape of the win rate curve seems 

to indicate that the probability of solving a board is a  function of the probability of 

picking a safe location at random when no other information is available. That the 

average found rate declines in exactly the same fashion confirms that this is the case.

Experiment Three

An investigation of how the shape of the board while maintaining the same 

number of mines changes the difficulty of a game.

Hypothesis

I hypothesized that square boards would be easier to solve than rectangular boards 

and that there would be a linear correlation between the width of the board and the 

percentage of wins. In other words, as the width of the board increases the difficulty of 

the board should increase in direct proportion.

Method

The data used for this experiment was exactly the same as in Experiment Two.

Results

The plots of the two metrics for most of the configurations show almost no 

significant variation in win or average found rate until the board becomes less than or 

equal to 5 units wide. In general, after 5 units wide the win and average found rates 

plummet and for all cases, except where the number of mines was zero, the win rate for 

boards of width 2 was 0%. However, in many of the configurations this was followed by 

an increase in the win and average found rate at width 1. See Illustration 2.
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Conclusion

Again, the statistics gathered failed to support the hypothesis. The shape of the 

board, except in extreme circumstances, seems to have absolutely no effect on the 

difficulty of the game. What probably makes the narrower boards extreme is that they 

have a higher probability of being divided into sections by a chain of mines. When a 

chain of mines completely surrounds an area of the board then it causally separates the 

inside of the area and its surroundings. So no information can be gained about the area 

from the outside and no information can be gained about the outside from the area. 

Whenever this situation occurs it forces the player to make a guess and, as we saw in 

Experiment Two, the difficulty of a board is a function of the probability of picking a safe 

location at random when no other information is available. A board that is more likely to 

have causally separated sections is therefore a board which is more difficult to solve.
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Further Research
The most important piece of information that this research lacks is a concrete 

statistic measuring the probability that a human player will win any given game. Until 

this statistic is available it will be impossible to truly determine how the MineBot 

compares to a human player and thereby provide evidence for the completeness of the 

MineBot. Even without this knowledge some improvements to the MineBot have been 

identified. The first improvement is a fix to the Burnout algorithm. A flaw exists in 

Burnout that prevents all safe locations from being identified. Another improvement is 

the addition of an algorithm that looks for similarities across all possible mine 

configurations on the remaining unknowns on the board. That is to say, an algorithm that 

investigates whether there is only one valid way to place all the remaining mines. Finally, 

the last planned improvement is to devise an “educated” guess algorithm, that guesses 

among the locations with the least probability of harboring a mine. 

Other areas of possible research include: Investigating the theoretical lower bound 

on the asymptotic complexity of these algorithms and whether the current 

implementations can be improved to more closely approach this lower bound. 

Investigating whether the algorithms developed could be generalized for other 

Minesweeper-like games, perhaps one with a different kind of neighborhood? 

Investigating whether the algorithms developed could be be applied in non-Minesweeper 

application domains? And finally, investigating whether it would be possible to teach an 

artificially intelligent agent to play Minesweeper. For example could a neural net be 

trained to play Minesweeper by feeding it boards and informing it when it had won/lost?
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