
Table of Contents
Game Mechanics..2
Game Play..3
Game Strategy..4

Truth..4
Contrapositive... 5
Exhaustion...6
Burnout..8

Game Difficulty... 10
Experiment One.. 12
Experiment Two..14
Experiment Three..16

Further Research.. 18

1

Game Mechanics
Minesweeper is a game in which the player must correctly deduce the positions of

mines in a minefield. The minefield is represented by an m by n grid. The cells of the grid

are referred to as locations and this grid of locations will henceforth be referred to as the

board. Each location has two states, open or not open, as depicted in Figure 1.

Additionally, each location has a numeric value in the range 0 – 9 associated with it. A

value of 9 denotes that the location harbors a mine.* The values 0 – 8 denote the number

of mines that are in the location's neighborhood, where a location's neighborhood is

defined to be the eight locations that touch it.† It is important to note that a location's

value is not known to the player until the player opens that location. However, should the

* The use of the number 9 here is simply a convention, any value other than 0 – 8 could have just as easily
been used. In the figures a mine icon is used instead of the number 9.

† Note that this is the equivalent of the Moore Neighborhood in Cellular Automata research.

2

Figure 1: Not Open and Open

OpenNot open

Figure 2: Three and five mine border configurations

3 mines on border 5 mines on border

player open a location with value 9, the player is said to have triggered a mine and

therefore loses the game. Thus an alternate way to state the goal of the game is to say that

the player must open all locations with values in the range 0 – 8 and no locations with

value 9.

Game Play
When a new game is created the player is presented with an m by n board with b

locations harboring mines. The mines are distributed such that all locations have an equal

probability of harboring a mine. Initially none of the locations on the board are open, thus

the player knows nothing of the positions of any of the mines. The game is played as a

series of steps, at each time step the player must choose one location to open. If a player

opens a location that contains a mine then the game is over. However, if the player opens

a non-mine location they learn the location's value and can use that location's value to try

to deduce the positions of other non-mine locations. At each time step the player also

knows the size of the board, the number of mines on the board, and the values of all open

locations. Finally, in most implementations, players are permitted to note which not open

locations they believe are mines, see Figure 3. This gives the player the opportunity to

3

Figure 3: Marks
A marked location

store information on the board that would otherwise have to be recalculated each time a

location was encountered. Minesweeper is a game of information, the more information

that is available to the player at each time step, the more likely it is that they will be able

to find the next non-mine location.

Game Strategy
A typical game of Minesweeper is played on a 16 by 30 board with 99 mines.

Thus the probability that a given location contains a mine is roughly .20. Suppose one's

strategy was to simply open locations at random on this 16 by 30 board. Then one would

have a 79% chance of choosing a non-mine on the first step, 79% on the second, 77% on

the fiftieth, and 74% on the hundredth. However, one's chances of opening one hundred,

or roughly a quarter, of the non-mine locations consecutively would be roughly one in

one hundred billion. Clearly a better strategy is necessary.

Truth
Truth is the most basic strategy that a typical player uses during a game of

Minesweeper. It involves analyzing a given location L to determine whether the locations

in its neighborhood must be all open, all marks, or neither. More precisely, if L is open

4

Figure 4: Neighborhood safe to open

After:Before:

then the value v of L is known and therefore the number of mines in the neighborhood is

known. If the number of marked locations in L's neighborhood is equal to v then any

remaining not open locations can be safely opened, see Figure 4. Alternatively, if v minus

the number of marks is equal to the number of unknowns then the unknowns have to be

mines, see Figure 5. Finally, if neither of these conditions are true then nothing can be

determined about L's neighborhood. This result should be obvious to Minesweeper

players of almost any aptitude, but it is so fundamental to solving the puzzle that it is by

far the most heavily used of the five algorithms. It is also very fast, the algorithm must

only examine the eight neighbors of the location L to determine what, if any, conclusion

can be drawn.

Contrapositive
Contrapositive is a slightly more complex algorithm. It is based upon the logical

axiom known as modus tollens. Modus tollens states that if p implies q then not q implies

not p. Accordingly, Contrapositive makes an assumption about the placement of a mark

and then checks the implications of this assumption. If the assumption forces the board

into a contradiction, such as a location having too many mines, then by modus tollens we

5

Figure 5: Neighborhood must be mines

Before: After:

know that the assumption was false. More specifically, contradiction chooses a location L

and places marks in its neighborhood so as to fulfill its mine requirement. It then applies

the truth algorithm to L, but instead of opening any of L's neighbors it only notes those

positions as being open and treats them as if they were really open although their value is

not discovered. Then truth is applied in the same way to each neighbor of L whose value

is known. This process continues recursively until a contradiction is discovered or all

neighbors have been exhausted. If a contradiction is discovered then the original

assumption must be false, and therefore the location that was marked must be safe to

6

Figure 6: Find a contradiction

Result:

Step 4:Step 3:

Step 2:
Step 1:

open, see Figure 6. In this process Contrapositive may make up to eight assumptions and

execute the Truth algorithm on up to n locations for each assumption it makes, where n is

the number of locations in the board. Unfortunately if the assumption does not result in a

contradiction then nothing is learned about the true value of the assumed mark, but the

same number of locations must be examined.

Exhaustion
The third algorithm, like the contrapositive algorithm, tests assumptions to try to

find out information about the board. Exhaustion works by identifying all valid mark

configurations for a given location and examining the neighborhoods for similarities, in

other words it exhausts all possibilities. Given a location L generate all possible mark

configurations that complete the mine requirement for L, see Figure 7. For each mark

7

Figure 7: Enumerate possibilities

Original Configuration

Possible Configurations

configuration C apply the truth algorithm to L as in the contrapositive algorithm. That is,

note any neighboring locations that would be opened, but do not actually open any

neighbors. Then apply this technique to each of L's neighbors. Continue recursively until

all neighbors have been checked or a contradiction is found, see Figure 8. If no

contradiction is found add C to the set of valid configurations. When each mark

configuration has been analyzed for validity, examine each unknown neighbor N of L. If

the corresponding location in every valid mark configuration is not marked then N must

be safe to open. Conversely, if in every valid mark configuration a neighbor of L is

marked, then N must be marked, see Figure 9. Like Contrapositive, this algorithm has a

running time bounded by the product of the number of assumptions and the number of

locations that must be examined. However Exhaustion is much more intensive because

the number of assumptions is given by m choose u, where m is equal to the number of

mines needed to satisfy L and u is the number of unknown neighbors of L.

Burnout
Burnout, unlike the first three algorithms, is not targeted at one particular location

on the board. Instead burnout tries to find a minimal mark configuration that satisfies all

remaining unsatisfied locations. If the minimum number of marks necessary to satisfy

these locations is equal to the number of remaining marks then any unknown location

8

Figure 8: Check Validity

Valid Invalid Valid

beyond the neighborhoods of these unsatisfied locations most not have any mines. Given

a board with unknowns, choose a location L that has unknowns in its neighborhood.

Define a function f to return the minimum number of additional marks needed to satisfy a

board. If the parameter to f is a board with all locations satisfied f returns zero. Then if we

consider each valid mark configuration of L to be a separate board, the minimum number

of mines needed to satisfy the original board is given by L minus the number of marks in

L's neighborhood plus the minimum over all valid mark configurations C of f(C).

Consider the bottom left corner of a Minesweeper board for which there are only

two marks remaining. If the minimum number of mines required to satisfy this board is

equal to two then it may be possible to find more locations that are safe to open. To

9

Figure 9: Look for similarities

Result

Valid configurations

determine the minimum number of additional marks needed, we select a location L that is

unsatisfied, Figure 10 represents such a situation (the selected location L is denoted with

a red border). Begin by choosing a valid mark configuration for L, then find the minimum

number of mines needed to satisfy that board by selecting an unsatisfied location L', see

Figure 11. Then choose a valid mark configuration for L' and find the minimum number

of mines needed to satisfy that board by selecting another unsatisfied location L''.

Continue recursing in this manner until no more unsatisfied locations remain. If one of

the unsatisfied locations has multiple valid mark configurations try each one before

returning. This process builds a tree containing all possible mark configurations for the

board, see Figure 12. This is, by far, the most intensive algorithm, in order to generate all

possible mark configurations it must enumerate m choose u mark configurations for up to

10

Figure 10: Bottom left corner with L selected

Figure 11: Bottom left corner with L satisfied and L' selected

11

Figure 12: Mark configuration tree

5 marks

4 marks 4 marks

5 marks

n locations where m is equal to the number of mines needed to satisfy L and u is the

number of unknown neighbors of L and n is the number of locations in the board. As a

result this algorithm, unlike the previous three, will typically take a couple of seconds to

execute and will sometimes take upwards of ten seconds to execute.

Game Difficulty
Minesweeper is undoubtedly a difficult game to win, but because there are no

record keeping facilities built in to the game it is difficult to obtain any sort of meaningful

quantification of Minesweeper's difficulty. If a large set of game outcomes could be

obtained then a plethora of different metrics could be computed the least of which being

the probability of winning a game. But in order to generate such data sets something

would have to play hundreds of games of Minesweeper and keep track of the outcomes. A

human-like, but fully automated minesweeper player would be ideal for an investigation

of this kind.

Such a player has been constructed by utilizing the four strategies detailed above.

The automated player, or MineBot, attempts to solve a game of Minesweeper by applying

the four strategies in ascending order of complexity. The MineBot, therefore, begins by

applying the truth strategy to every location on the board. If, over the entire board, truth

fails to reveal at least one safe location or place at least one mark then MineBot considers

the strategy to have failed. When a strategy fails MineBot switches to the next least

complex strategy which is contrapositive, in this case. If contrapositive fails to yield any

progress from any location on the board MineBot will apply exhaustion and if exhaustion

fails MineBot will apply burnout. Finally, if burnout fails MineBot simply opens one non-

12

open location at random. However, if any one of these strategies succeeds in identifying a

mark or opening a location then MineBot switches back to the least complex strategy and

begins the search anew.

Using my MineBot I performed three experiments: The first investigated the

difficulty of an expert game, 99 mines on a 16 by 30 grid, the second investigated how

the difficulty changes as the number of mines increases on a board with fixed dimensions,

and the third investigated how the shape of the board changes the difficulty of a game

when maintaining the same number of mines.

Experiment One

An investigation of the difficulty of solving a standard expert board: 99 mines on

a 16 by 30 grid.

Hypothesis

I hypothesized that Minesweeper was a very difficult game to win consistently. I

knew from my own experience playing the game that successfully solving the board was

difficult and that the difficulty arose from the guesses that Minesweeper players often

make. Every player is forced to make at least one guess, and that is choosing the first

location to open. When choosing this location one has a 99 in 480, or approximately a

20% chance of failing. Thus no player can possibly win very much more than 20% of the

games in a large data set. Also there is usually at least one more guess later in the game

that offers a 50% chance of failing. Thus I hypothesized that an expert player should be

expected to win roughly 10% of its games.

Method

The experiment to quantify the difficulty of a game of Minesweeper was very

13

simple, I merely set up the MineBot to play 500 expert boards and recorded the outcome

of each game. My goal was to obtain a large sample of outcomes from which I could

reliably derive the chance of winning a single game by dividing the number of games won

by the number of games played, this is called the win rate.

Results

Using the MineBot a win rate of 5.6% was observed on the expert board

configuration.

Conclusion

The MineBot's win rate was surprisingly low. This means that either the MineBot

is flawed, it is missing a technique, or that my estimated win rate was too optimistic.

However the MineBot never loses except when it is making a guess, thus it must not be

flawed in a way that causes it to incorrectly identify mines. The only other flaws that can

exist involve not utilizing all the information from the board that is available and this is

equivalent to the MineBot missing technique. The possibility of the MineBot missing a

technique can be tested by allowing a human to play wherever the MineBot would

normally have guessed. If the human/MineBot team still fails to achieve a win rate closer

to 10% we can assume that the MineBot is at least as good as the human and therefore

that the no techniques are missing. Then the only remaining conclusion would be that the

estimate was too optimistic.

Experiment Two

 An investigation of the change in difficulty as a result of changing mining

densities on a fixed board size.

14

Hypothesis

I hypothesized that increasing the number of mines would increase the difficulty

and that as the number of mines increased there would be a point at which the number of

wins would suddenly drop off. In other words that, at a certain number of mines, the

board becomes much more difficult to solve than it was previously. I refer to this point as

the crystallization point.

Method

In order to test this hypothesis it was necessary to obtain measurements of the

difficulties of a range of different board configurations. Originally the experiment was set

up to run on boards of width 1 to 21 with 0 to 100 mines, at 5 mine intervals with 50

trials per configuration. However the data from this experiment contained many outliers.

In an effort to smooth out the data more trials were added per configuration and the

intervals were narrowed. But even with 200 trials per configuration and intervals of 2

mines there was no significant improvement in the data. In fact the only significant

change was the running time, which increased dramatically. Due to this dramatic increase

in processor time the experiment was restricted to boards of width 1 to 21 with 0 to 100

mines, at 5 mine intervals with 100 trials per configuration. One final tweak was made to

include mine densities up to 150 mines to force the MineBot to have a consistent 0% win

rate for all board shapes.

In addition to win rate another metric called average found rate was introduced for

each set of trials. Average found rate was calculated by averaging the found rates for each

trial, where the found rate for a trial was computed by dividing the number of mines

identified by the total number of mines on the board. The purpose of adding average

15

found rate was to ensure that the inconsistencies found in the win rate were not caused by

that metric but were inherent in the game, if average found rate showed similar

inconsistencies then the win rate metric itself could be ruled out as a possible cause of the

outliers.

Results

Plots of the two metrics show a linear decrease in win rate and average found rate

between 30 and 110 mines. Between 0 and 30 mines there is a short lead-in period where

the slope of the metric increases, that is, the difficulty is increasing at an increasing pace.

Between 110 and 150 mines there is a similar lead-out period where the slope of the

metric decreases, the difficulty increases at a decreasing pace. See Illustration 1.

16

Illustration 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

10

20

30

40

50

60

70

80

90

100

100 Trials on 16 by 30 Board

Win Rate
Avg. Found Rate

Mines

P
er

ce
nt

Conclusion

The statistics gathered by the MineBot failed to show any evidence of a

crystallization point. Instead they showed that, in general, difficulty increases roughly

linearly with an increase in the number of mines. The shape of the win rate curve seems

to indicate that the probability of solving a board is a function of the probability of

picking a safe location at random when no other information is available. That the

average found rate declines in exactly the same fashion confirms that this is the case.

Experiment Three

An investigation of how the shape of the board while maintaining the same

number of mines changes the difficulty of a game.

Hypothesis

I hypothesized that square boards would be easier to solve than rectangular boards

and that there would be a linear correlation between the width of the board and the

percentage of wins. In other words, as the width of the board increases the difficulty of

the board should increase in direct proportion.

Method

The data used for this experiment was exactly the same as in Experiment Two.

Results

The plots of the two metrics for most of the configurations show almost no

significant variation in win or average found rate until the board becomes less than or

equal to 5 units wide. In general, after 5 units wide the win and average found rates

plummet and for all cases, except where the number of mines was zero, the win rate for

boards of width 2 was 0%. However, in many of the configurations this was followed by

an increase in the win and average found rate at width 1. See Illustration 2.

17

Conclusion

Again, the statistics gathered failed to support the hypothesis. The shape of the

board, except in extreme circumstances, seems to have absolutely no effect on the

difficulty of the game. What probably makes the narrower boards extreme is that they

have a higher probability of being divided into sections by a chain of mines. When a

chain of mines completely surrounds an area of the board then it causally separates the

inside of the area and its surroundings. So no information can be gained about the area

from the outside and no information can be gained about the outside from the area.

Whenever this situation occurs it forces the player to make a guess and, as we saw in

Experiment Two, the difficulty of a board is a function of the probability of picking a safe

location at random when no other information is available. A board that is more likely to

have causally separated sections is therefore a board which is more difficult to solve.

18

Illustration 2

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0

10

20

30

40

50

60

70

80

90

100 Trials with 55 mines

Win Rate
Avg. Found Rate

Width

Pe
rc

en
t

Further Research
The most important piece of information that this research lacks is a concrete

statistic measuring the probability that a human player will win any given game. Until

this statistic is available it will be impossible to truly determine how the MineBot

compares to a human player and thereby provide evidence for the completeness of the

MineBot. Even without this knowledge some improvements to the MineBot have been

identified. The first improvement is a fix to the Burnout algorithm. A flaw exists in

Burnout that prevents all safe locations from being identified. Another improvement is

the addition of an algorithm that looks for similarities across all possible mine

configurations on the remaining unknowns on the board. That is to say, an algorithm that

investigates whether there is only one valid way to place all the remaining mines. Finally,

the last planned improvement is to devise an “educated” guess algorithm, that guesses

among the locations with the least probability of harboring a mine.

Other areas of possible research include: Investigating the theoretical lower bound

on the asymptotic complexity of these algorithms and whether the current

implementations can be improved to more closely approach this lower bound.

Investigating whether the algorithms developed could be generalized for other

Minesweeper-like games, perhaps one with a different kind of neighborhood?

Investigating whether the algorithms developed could be be applied in non-Minesweeper

application domains? And finally, investigating whether it would be possible to teach an

artificially intelligent agent to play Minesweeper. For example could a neural net be

trained to play Minesweeper by feeding it boards and informing it when it had won/lost?

19

	Game Mechanics
	Game Play
	Game Strategy
	Truth
	Contrapositive
	Exhaustion
	Burnout

	Game Difficulty
	Experiment One
	Hypothesis
	Method
	Results
	Conclusion

	Experiment Two
	Hypothesis
	Method
	Results
	Conclusion

	Experiment Three
	Hypothesis
	Method
	Results
	Conclusion

	Further Research

