
1

Title Unknown
Annapurna Valluri

1. Introduction

There are a number of situations, one comes across in one’s life, in which one has

to find the k nearest neighbors of an object, be it a location on a map, an image or even a

number. Finding the k nearest neighbors of an object can be done as easily as sorting

those very objects, once you have defined the method of calculating the distance between

the objects. In some cases, it simply involves calculating the distance using coordinate

geometry and in others, it is more complicated than that.

The world wide web is becoming an essential component in every organization.

Nowadays, there is not a single company, organization, or TV channel that does not have

a web page. An important key to success for a company, university, or even an individual,

is keeping up with the latest technology. A lot of software can be downloaded from the

web. This saves time and money since the available software is already tested for errors.

But wouldn’t it be nice if you could simply get your information from a site without

having to download the code?

2. Main function of the Project

 As you must have already guessed, this project deals with inserting and finding the

k nearest neighbors of an object, in this case being a stock. The distance is calculated on

the basis of the closing prices of the stocks. A number of databases can be created in

which you can insert a number of files with closing stock quotes in them. The distance is

calculated using the famous Euclidean distance between 2 vectors. The vectors, in turn,

are calculated using the Daubechies-4-wavelet transform.

One of the important features of this project is that it can be run from the web. It

was written in JAVA and is run from the web as an applet. There are a number of reasons

for choosing JAVA as the programming language. An important reason is that Java is an

object oriented programming language. Now comes the question, “Why not use C++?”

C++ is not easily portable unlike Java, in which the same code can be run on Windows 95,

2

Solaris, Unix, and Macintosh. And the main reason being that Java has a number of

routines that make it relatively easy to communicate with TCP/IP protocols like HTTP

and FTP, which other programming languages lack.

3. Applet Security

Since applets are designed to be loaded from a remote site but executed locally,

security becomes an important issue. Security of files restricts the functionality of applets.

Applets cannot run any local executable program. Applets can only communicate with the

server from which they were downloaded. When applets are run from Netscape, they

cannot read or write to the local computer’s file system. Although, if you use other

browers it may be possible to do so because this is not a part of the Java specification.

Applets cannot find out any information from the local computer.

4. Client-Server Architecture

Java is an extremely powerful language in terms of using the object oriented

methodology in software engineering. The design approach used in this project was

object oriented and therefore, can be expanded to find the k nearest neighbors of any

object. As the applet security prohibits reading and writing of files, the design is based on

a client server architecture. The current version of applets prevents access of files across

the internet. But perhaps, later versions will provide for this facility, thus facilitating the

task of accessing files without need for the client-server model. If the project had been an

application, the need for a client-server model would not have arisen.

5. Main components

5.1 Client
A user can bring up the applet from a web browser at the URL

http://www.y.glue.umd.edu/~annaval. The client comprises the User Interface called the

Interface object, the Graph-Maker object and the Connection object.

• The Interface object is responsible for the graphical user interface which is displayed at

the specified URL.

3

• All information requested or wished to be inserted in the Database is passed on to the

Database via the Connection object, which connects to a Server on which the

Database is located. If an error occurs in contacting the Server a

ConnectionException is thrown and a message is displayed indicating the occurrence

of the error.

• The Graph-Maker object is responsible for displaying on an applet window the x-y

plot of the closing prices of the k nearest neighbors of a particular stock along with its

distance from that stock.

CLIENT

GUI: Graphical Interface
(Interface.java)

Graph Maker
(Graph.java, Axis.java)

Connector
(Connection.java,

ConenctionException.java)

Figure 2.1: The Client component is an aggregation of the above
components.

4

CLIENT SERVERGets Information
From

Figure 2.2: Many to one relationship

5.2 Server
The server is a multi-threaded server which allows several clients to connect to it,

simultaneously. Every time a client starts up the applet, a new client connection is

requested and the Server spawns off the responsibility of the new connection to one of its

child processes. And whenever, the client is finished with its work the child process is

killed but the Server continues to run.

Problems arise when two threads have access to the same object and both threads

call a method that modifies the same object. This can lead to corrupted objects and loss of

data. A problem that crop up in this program is when two users create two files with

different stock information in the same sub-database. Normally, this would not cause a

problem, but since, the database in this project is, merely, a creation of directories and files

in that directory, problems could arise when two users have access to and modify the same

file. The next section explains in detail the design of the database in this program.

The objects that the server is comprised of are:

• The MultipleConnection object which is the object which is responsible for creating

the different threads so that multiple users can have access to the program

simultaneously.

• Generator/Database Object: this object facilitates the insertion and search of stocks in

the database. It is responsible for all communication with the database. An additional

5

responsibility of the Generator object is that it communicates with the

VectorCalculator and DistanceCalculator objects.

• The VectorCalculator object calculates the vectors for the individual stocks based on

the closing prices. These vectors are later used by the DistanceCalculator to calculate

the distance between different stocks. The algorithm for the VectorCalculator is a shell

script program written by Dr. Faloutsos. The algorithm is based on the Daubechies-4-

wavelet transform. The vector consists of 5 numbers each representing a different

value. For example, one number represents the average or mean of all the closing

prices for that particular stock.

• The object whose function is to calculate the distance between stocks is the

DistanceCalculator. In calculating the distance, it uses the vectors, calculated by the

VectorCalculator object, for individual stocks. The current equation used by the

DistanceCalculator object is the Euclidean equation.

• During a search for neighbors of a specific stock, the distances between that specific

stock and other stocks in that sub-database, are sorted in ascending order by the

Sorter object. The Sorter object can be used to sort any length of double numbers.

6

Server

MultipleConnection/
Thread DistanceCalculator Generator/Database

Sorter VectorCalculator

Figure 2.3 Object Model for the Server

6.0 Database
The database is responsible for the storing of files containing the quotes of closing

stock prices. The database in this program is only a make-belief one which acts like a

database but is not really one. Every time, a new sub-database is created by a user, a new

directory is created and the stock quotes are stored in a file. The current version of the

program disallows the deleting or appending of closing prices, to existing stocks. And

neither does the program allow the deleting of sub-databases. Although, it would be

relatively easy to provide these additional features in a later version of this program.

But the fact that there isn’t a real database on the server is hidden from user, since

this information is not germane for his purposes. Since this program was developed while

7

keeping in mind the object oriented framework, it would not require excruciating efforts

to include a real database to store the closing prices of stocks.

7.0 User’s Manual
The most important point to remember before you even start using the applet is to

remember to start the applet on the same machine as the one on which you are running the

program specific server. Once you know make sure that the applet and the server are

running from and on the same machine, you can be sure that your instructions will be

carried out properly.

• You can either insert new stocks in an existing sub-database, or create your own sub-

database and add a new stock file with closing stock prices. There is nothing much

that the program does differently if you are inserting a stock in an existing or a new

sub-database. For either of these you have to insert information in three fields.

1. The first field being the database field. If the sub-database already exists, the

program does not create another one. Whereas, if the sub-database does not

exist, it creates a new sub-database.

2. In the second field, the user must type in the name of the stock.

3. The last field which is an important field, the user has to type in the closing

prices for that particular stock. The closing prices must be on separate lines,

with one line containing only one stock price. If you make a mistake on any

line, you can always return to it, with the mouse.

So to insert a stock whether in an old or a new sub-database, the user must select

the “Insert” button. Once the “Insert” button is selected, the three fields mentioned above

get activated. When the user is ready to send the information, he/she must click on the

“OK” button which is located in the center, towards the bottom, of the applet. The user

will see a message on the bottom of the applet, indicating whether there was a success or

failure in the insertion. If one or more of the three fields mentioned above were not filled,

an error is reported.

• The user can also search for neighbors of a particular stock in a specific sub-database.

If the user wishes to conduct a search, the “Search” button has to pressed, so that the

8

fields related to the “Search” routine, can be activated. The “Search” routine, also has

three fields which are the following:

1. The list of sub-databases that the user can choose from. Once a sub-database is

selected, the names of all the stocks in that sub-database appear in another list

box.

2. The user also has to select the stock in the sub-database on which he/she

wishes to conduct a search.

3. The third field requires a number to be entered into it, which will represent the

number of neighbors that the user wants to search for, for that particular stock.

One of the nice features of this program is that when a user inserts a new sub-

database or stock, it gets added to the list of sub-databases and stocks in the search

section of the applet. This has been added so that a user does not have to exit the program

every time he/she inserts a new stock or sub-database. If all three fields are not filled, an

error is reported. The status of the search is reported to the user on the status message

box located at the bottom of the applet. If the search was unsuccessful, an error message

is reported. Otherwise, the plots for the all k neighbors are drawn on separate windows.

The header of each window reports the name of the stock along with its distance away

from the stock on which the search is being conducted. The closing prices for the stocks

are plotted on an x-y axis.

• If you wish to delete all the information you have typed, in stead of going to each field

and pressing the delete or backspace key, you can click on the “CLEAR” button,

located on the bottom of the applet. This will delete all the information from all the

fields, except the list boxes containing the names of the sub-database and stocks.

• If you wish to exit the program, all you have to do is exit netscape. The server will kill

the child process but the server will continue to run on the machine on which it was

started.

8.0 Protocol
When data is being sent back and forth between the client and the server, each one

has to know what the data represents. In the world of today, there is a protocol that exits

in nearly every situation where communication is needed, whether it is in the diplomatic

9

circle or in the world of computers. I developed a protocol of my own, to facilitate the

transfer of data and information between the client and the server. The user does not need

to know how the client and server interact and how the data is deciphered by either one.

• So that the server knows whether the user requested an insertion or a search, the

number 1 or 2 is placed first, in the bytes sent from the client to the server. If a 1 is

read when the server is reading the bytes, it knows that an insertion is requested, and if

the number 2 is read, a search is requested. The other data such as the name of the

sub-database, the name of the stock and the closing prices of the stock are also sent to

the server and are separated from the number 0 or 1 by “:”. They are separated from

one another by “,”. The number 0 or 1 is placed first, and then the individual fields are

placed after it. Each individual closing stock price is separated from other closing

prices by semi-colons, “;”. For example, for an insert request the data sent from the

client to the server could look like this, “0:mydatabase,IBM,123;124.01;109.98;...and

so on. An example of search data is, “1:mydatabase,CISCO,3.” The last number

representing the number of neighbors requested by the user.

• When the applet is started, the client does a search for the names of the sub-databases

on the server end, to make the task of the user as easy as possible. When this

information is sent to the server, it looks like the following, “3:”. The number apprises

the server that a list of sub-databases is needed to requested by the applet to fill the list

box attached to the applet.

• When a user chooses a sub-database while doing a search, the client requests the

server for the names of all the stocks in that particular sub-database. The client informs

the server of its request by placing the number 4 followed by a colon, “:”, which in

turn is followed by the name of the sub-database. For example, “4:mydatabase”.

• After the client is informed by the server of a successful search and with the names of

all the neighbors of a particular stock, the client requests the server for the closing

prices of a particular stock, in a specific sub-database, so that it can draw the x-y plot

for the stock. The server sends the needed request if it reads the number 2 followed by

a colon, “:”, and the names of the sub-database, and the stock. For example,

“2:mydatabase,IBM”.

10

The server sends information back to the client in the form of bytes, which has to

be deciphered by the client in order to find out whether the insert or the search was

successful or not.

• In an insertion, if the server returns the number 0 followed by a colon, “:” it ensues

that there was an error and the insert request was not fulfilled.

• If the server returns the number 1 followed by “:”, it represents a successful insertion.

• During a search, if the client receives the number 0 followed by a colon, it translates to

mean that there were no other stocks in the sub-database besides the one on which the

search was being conducted.

• If the client receives “1:”, it represents a successful search, for all k neighbors specified

by the user. And the graphs for the k neighbors are drawn on separate windows.

• If the client receives “2:” from the server, it means that not all k neighbors were found

because the number of neighbors requested by the user were more than the number of

stocks in the sub-database excluding the stock on which the search was being

conducted.

• If the client receives “3:” followed by some error message, it means that the number of

fields in the vector calculated for one of the stocks did not contain 5 fields. This leads

to a problem when calculating the distance between that stock and the stock on which

the search is being conducted because the DistanceCalculator object requires the

vectors to be of length 5.

9.0 Enhancements to previous work

A similar program was written using the Tcl and Tk tool kit. This program is

better than the previous program in terms of the following new features:

1. Ease of portability: The compiled program should work the same with no problems on

a Windows 95 based system, or a Unix system. Whereas the previous program could

not have worked with very little extra effort on both systems.

11

2. Web based program: This program can be accessed from the web, whereas the one

written in Tcl-Tk could not be viewed from the web. This allows this program to be

used by remote users.

3. Object Oriented Methodology: This program was written using an object oriented

methodology. As a result, it will be very easy to make improvements or any

enhancements to the code, without drastically changing it. For example, a real

database can be added using JDBC and most of the code need not change.

4. Multi-users: This program supports multi users simultaneously. All the users need not

have a copy of all the code. All they need is one copy, that has the server running on it,

and all of them can use it concurrently. The earlier code that was written supported

only one user at a time.

10.0 Conclusion and future work

This program is written for the sole purpose of searching for k neighbors of an

object, in this case of stocks. Since it was written using an object oriented methodology, it

can be expanded to include a search tool for any specifically defined object. An important

feature of this program is that it can be run from the web and multiple users have access to

it, simultaneously. It was modeled using a client-server model, because of applet security

which prohibits reading and writing of locally stored files.

Improvements can be made to this program by adding code that will employ a real

database using JDBC, in stead of an illusory database. Some enhancements that can be

made are the searching of objects which can be places on a map.

11.0 My Experience
I thoroughly enjoyed working on this project. It was hard at first, since I did not

have a clear understanding of what was the project was all about. But as I started working

on it, I got a better understanding of the what features I was required to provide in this

project.

12

Another reason for my getting off on a slow start was that I was learning the

language as I was progressing in my work. I had done quite a bit of work, when I realized

that my approach to the problem was completely wrong. And I had to redo a large portion

of the already completed work. Anytime, I ran into any problems with JAVA, it took me

some time to figure it out, since I had no friends who could help me because hardly

anybody knows JAVA these days.

But on the whole, I really enjoyed working on this, and I can say very confidently

that I have learnt a lot from the project. I learnt JAVA, of course. And if I had not been

assigned to work on a relatively large project like this one, I don’t think I would have

learnt the language in the near future. This project, in a sense, forced me to learn JAVA.

And I am very grateful to Dr. Faloutsos for assigning me this project. I also got a better

understanding of client-server based architecture.

I would like to thank Dr. Faloutsos, once again, for giving me so much freedom in

choosing my project and helping me learn so many other auxiliary topics.

13

14

