Voter discrepancy through improper districting

Complete by John Brennan, David Marcin, and David Renie

under the advisement of Dr. James Purtilo

Abstract
In response to the recent inconsistency issues with the voter boundaries in the State of Maryland our team has developed a geographical information system (GIS) to assess the accuracy of district boundaries. This is performed by comparing a redistricting court order with the topological data collected and provided by the U.S. Bureau of the Census. Once both datasets are input into the GIS, we can query the database to find inconsistencies such as boundary overlaps or gaps and other statistical information from the datasets. We report on our systems results, implementation, and future uses.
Introduction
In recent years there has been an overwhelming amount of controversy with voter systems such as Diebold Election Systems and Sequoia. Problems have also risen from discrepancies in districting plans of several states.

While the United States has a system in place for defining district boundaries, it has become apparent that some states may not follow the same boundary divisions. The system, known as the Topologically Integrated Geographic Encoding and Referencing (TIGER) system, is conducted by the U.S. Bureau of the Census. The system provides a mathematical geographic representation of the United States and its territories which defines locations of streets, rivers, and other topological feature areas.

On June 11, 2002 an Order by the Court of Appeals of Maryland stated that several parts of the 2002 Legislative Redistricting Plan has violated the Maryland Constitution. In response to this Order, a second Order was drafted on June 21, 2002 to correct this problem.

Although this is assumed to correctly fix any prior inconsistencies our system will be used to provide further confirmation of its accuracy. We also aspire that this system may serve to validate future redistricting plans.
Data Collection
In order to pose queries against our database, we were required to populate the database with two distinct datasets. The first dataset was taken from the June 21, 2002 Court Order to define legislative districting of the State of Maryland. To remain consistent the second dataset was extracted from the UA Census 2000 TIGER/Line file.

Within each TIGER/Line file, representing a single county entity, there are up to 19 different record type files. A record type file is a file that describes a specific type of entity. Below is a description of the possible record type files and their meanings.
	Record Type
	Description

	1
	Record for each unique complete chain (of end nodes)

	2
	Provides lat/long coordinates to describe RT1 chains

	3
	Area codes

	4
	Alternative names for RT1

	5
	Defines feature names for record type 1's chain

	6
	Additional address range when address numbers are not uniform

	7
	Landmarks

	8
	Polygons for landmarks

	9
	Lists names of special addresses like shopping centers and airports

	A
	Record for each polygon represented by RT P. Provides entity codes for state, county, county subdivision, place, Native home land, census tract, block. For users only interested in polygon information. Also includes fields for 106th congressional district

	C
	Provides unique list of all geographic codes, associated names, and some entity attributes.

	H
	History of when RT1 chains were merged or split

	I
	Link between complete chains and polygons. (RT1 with RTP).

	P
	Identifies internal point coordinates for each polygon. RTP has 1-to-1 with RTA and S and 1-to-many with RTI.

	R
	Record number range

	S
	Record for each polygon in RTP. Contains geographic entity codes

	Z
	Zip codes

A complete list of fields for all record types can be found at the URL below in Chapter 6: Data Dictionary. http://www.census.gov/geo/www/tiger/tigerua/ua2ktgr.pdf

Although the TIGER/Line files are quite robust, we would only need a subset of such data. The record types needed were RT1, RT4, RT5, RT6, RTC, and RTS. Record type 1 is the core relation which contains the TIGER/Line ID (TLID), feature (street) name, type, address, zip code, census tract, block number, and coordinate point. Each line in the file is another tuple of the relation. Each tuple defines the attributes for both the left and right side of the block. In the case where a block has multiple names or address ranges record type 4 and 6 are used respectively. Record type C maps place identification codes to place (city) names. Similarly, record type I maps TLIDs to census file and polygon identification codes (CENID and POLYID respectively). Using these polygon identification codes we can join and extract voting, congressional, and state legislative districts using the record type S file. (Unfortunately the State of Maryland does not provide the Bureau of the Census with state legislative district information for the 2000 TIGER/Line files).

The figure below provides a visual cue as to how we joined the record type files provided to create the Tiger file dataset we used. The TigerParser that we developed uses these type file joins to produce a set of SQL files to populate the database.

[image: image1.jpg]Creating the DB from the
Tiger Line Files

PLACEL PLACER
L 4

RTS —TLID RT4 TLID-» RT1 =TLID. RT6

LD

1
CENID,POLYID

To facilitate ease of querying we constructed our database schema slightly different from the schemas of the TIGER files. The specific design difference is where we store address ranges. The TIGER files store the first pair of address ranges in the record type 1 files and all subsequent ranges in record type 6 files. In order to increase the performance of our queries we extracts all the address ranges from type 1 to be included in record type 6, the table we named address_ranges.
Experiments and Results

(guys provide the SQL query used and results e.g. empty dataset)
Implementation
The implementation of the TigerParser is quite straightforward. The U.S. Bureau of the Census provides a set of zip files for each state in the United States. Each zip file name takes the form TGRXXYYY.ZIP where XX represents the FIPS state code and YYY represents the FIPS county code. The distinct record type files are found within each zip file for that particular county. If there is an empty record type file for a specific county, that file is excluded from the ZIP file.

The TigerParser requires all zip files to be located in the same directory and extracted before starting the parser. The parser asks the user to input the directory to find the files (or you may hit enter if it is located in the same directory as the parser). The parser then selects only the files needed to build the SQL files for population. After parsing a file it generates a SQL file. The form of the SQL file is runNN-NAME-XXYYY.SQL where NN corresponds to the NAME and is meaningless otherwise, NAME corresponds to the database table the file will populate, XX represents the FIPS state code and YYY represents the FIPS county code. The reason behind the run number is that because of database constraints certain tables must be populated before other tables. In order to automate the database population process, which reads files alphabetically, a system had to be put in place to do so—this was the quickest solution.
(dave discuss how you designed the geometry queries to find overlaps and gaps. Also provide the method used to parse the court order)
Conclusions
(conclusions here)
References
UA Census 2000 TIGER/Line File. Retrieved March 29, 2006, from http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
Raker, J., Dissents. Court of Appeals of Maryland. In the Matter of Legislative Districting of
the State. June 21, 2002.
Appendix
Database Schema
[image: image2.jpg]Congressional and

voting district MepsRT1 O RTS

map TLID to voting

district - created map TLID to district #

Tiger: RTS. Tiger RTI from SQL query
polydata blocks_x_polydata] leginfo
PKFK1 | CENID PKFKT | TLID o Pk [D
PKFK1 [POLYID PIFK1 | LD
> VERSION FK1 [TLID
VERSION CENIDL vIB LEGDISTL
106 POLYIDL LEGDISTR
) CENIDR DELDISTL
POLYIDR DELDISTR
i Merges RT1 and RT6 to
Deﬂ?;z:f:g;“r"’:;':s"ee‘ P include complete list o all
laps RT1 to RT5
Tiger: RTS address ranges
alfeatures altfeatures_x_blocks o address_ranges
Pk [iD PKFK1 [TLID PK T PK_[ADDID
FK2 |SCODE VERSION VERSION FK1 |TLD
FK2 |CCODE [~ FEATI P FEDIRP VERSION
FK1 | FEAT FEAT2 Renave [|FRADDL
FEDIRP FEATS FETYPE TOADDL
FENAME FEAT4 FEDIRS FRADDR
FETYPE FEATS FK1FK3 |SCODEL TOADDR
FEDIRS FK2/FK4 |SCODER ziPL
FK1 |CCODEL ZPR
Fk2 |CCODER
CousuBL
COUSUBR
FK3 |PCODEL
FKi |PCODER
fipscodes TRACTL fipsplaces
PK [SCODE | o [hactn PK |SCODE
PK | CCODE BLOCKR [P|PK |PCODE
fr_geom
SNAWE [—>{ [version
CNAME to_geom PNAME

Maps state/county codes to
their respective names

The main table

Maps state/city codes to
their respective names
Tiger: RTC

Tiger: RT1

Tables in white were created using the TigerParser (Java application)

Table leginfo in blue was created by parsing the Maryland Court Order

Table fipscodes in green was manually created (because of its relatively small size and indefinite state)

Table tlid_to_vtd in green was manually created using a CREATE TABLE AS query by populating it with data already available from other tables.

create table fipscodes(

SCODE char(2),

CCODE char(3),

SNAME char(2),

CNAME varchar(40),

UNIQUE(SCODE,CCODE)

);

create table fipsplaces(

VERSION char(4),

SCODE char(2),

PCODE char(5),

PNAME char(60),

UNIQUE(SCODE,PCODE)

);

CREATE SEQUENCE altfeatures_seq INCREMENT 1 START 1;

create table altfeatures(

ID integer not null default nextval('altfeatures_seq'),

SCODE char(2),

CCODE char(3),

FEAT integer,

FEDIRP char(2),

FENAME varchar(30),

FETYPE char(4),

FEDIRS char(2),

UNIQUE(SCODE,CCODE,FEAT),

PRIMARY KEY(ID)

);

create table blocks(

TLID integer,

VERSION char(4),

FEDIRP char(2),

FENAME varchar(30),

FETYPE char(4),

FEDIRS char(2),

SCODEL char(2),

SCODER char(2),

CCODEL char(3),

CCODER char(3),

COUSUBL char(5),

COUSUBR char(5),

PCODEL char(5),

PCODER char(5),

TRACTL char(6),

TRACTR char(6),

BLOCKL char(4),

BLOCKR char(4),

PRIMARY KEY(TLID)

);

SELECT AddGeometryColumn('honors', 'blocks', 'fr_geom', -1, 'POINT', 2);

SELECT AddGeometryColumn('honors', 'blocks', 'to_geom', -1, 'POINT', 2);

create table altfeatures_x_blocks(

TLID integer REFERENCES blocks (TLID),

VERSION char(4),

FEAT1 integer default 0,

FEAT2 integer default 0,

FEAT3 integer default 0,

FEAT4 integer default 0,

FEAT5 integer default 0,

PRIMARY KEY(TLID)

);

CREATE SEQUENCE address_ranges_seq INCREMENT 1 START 1;

create table address_ranges(

ADDID integer not null default nextval('address_ranges_seq'),

TLID integer REFERENCES blocks (TLID),

VERSION varchar(50),

FRADDL varchar(11),

TOADDL varchar(11),

FRADDR varchar(11),

TOADDR varchar(11),

ZIPL char(5),

ZIPR char(5),

PRIMARY KEY(ADDID)

);

create table polydata(

VERSION char(4),

CENID char(5),

POLYID char(10),

CD106 char(2),

VTD char(6),

PRIMARY KEY(CENID,POLYID)

);

create table blocks_x_polydata(

TLID integer REFERENCES blocks (TLID),

VERSION char(4),

CENIDL char(5),

POLYIDL char(10),

CENIDR char(5),

POLYIDR char(10),

PRIMARY KEY(TLID)

);

create table leginfo(

legdistl char(2),

legdistr char(2),

deldistl char(3),

deldistr char(3),

tlid int4,

id int4 NOT NULL DEFAULT nextval('leginfo_id_seq'::regclass)

);
create table tlid_to_vtd(

tlid int4,

vtd char(6)

);

PAGE
7

