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1 Introduction

The classic Josephus problem describes n people arranged in a circle, such
that every mth person is removed going around the circle until only one
remains. The problem is to �nd the position Jn,m ∈ {1, 2, . . . , n} at which
one should stand in order to be the survivor. [1]

The `Russian Roulette' problem considers n people arranged in a circle, with
a (biased) coin passed from person to person. Upon receiving the coin, the
kth player �ips the coin and is eliminated if and only if it comes up heads.
The coin is then passed to the (k + 1)th person continuing until only one
person - the survivor - remains. Note that as long as the probability of
elimination is non-zero, the game will almost surely terminate.

To give the problem richer structure, we allow the probability of elimination
to depend on the number of players still in the game (i.e. pk ∈ (0, 1] is the
probability of elimination with k players remaining in the game).

1.1 Problem De�nition

Given n players and a list of elimination probabilities P = {pn, pn−1, . . . , p2},
�nd the probability Rn,k(P ) that the kth player will be the survivor?
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2 Solution as a Recurrence Relation

Let the list of elimination probabilities be P = {pn, pn−1, . . . , p2} and for
convenience, let qn = 1− pn.

Let Ln,k(P ) be the probability that the kth player in an n player game will

not be the survivor. (For conciseness, the list P is implied in the following
calculations.)

Clearly, L1,1 = 0 (the case of only one player, who wins by default). In
addition, Li,0 = 1 for all i ≥ 1 (`Player 0' represents someone who has
already been eliminated, thus the probability of them not being the survivor
is 1) Then,

Ln,k =
pn

1− qnn

n∑
i=1

qi−1
n L(n−1),(k−i) mod n

or equivalently,

Ln,k =
pn

1− (1− pn)n

n∑
i=1

(1− pn)
i−1L(n−1),(k−i) mod n

Proof. Suppose that the ith player is eliminated in an n player game:
For k > i the kth player becomes the k− i ≡ (k− i) mod n player in a game
with n− 1 players and elimination probability pn−1

For k = i, the kth player is eliminated, and has probability 1 of not surviving
the rest of the rounds, regardless of their outcome. By de�ning Ln,0 = 1,
we can consider the eliminated player as the `0th' player in an n − 1 player
game.
For k < i, the kth player becomes the n− i+ k ≡ (k − i) mod n in a game
with n− 1 players and elimination probability pn−1

Finally in the case of n consecutive non-eliminations, the probability of each
players survival is unchanged (we `made a complete circle' where no one was
eliminated). Thus:
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Ln,k = pnLn−1,k−1 mod n + qn(pnLn−1,k−2 mod n + qn(. . . qn(pnLn−1,k−(n−1) mod n + qnLn,k) . . . ))

= pn(q
0
nLn−1,k−1 mod n + q1nLn−1,k−2 mod n + · · ·+ qn−1

n Ln−1,k−(n−1) mod n) + qnnLn,k

= 1
1−qnn

pn(q
0
nLn−1,k−1 mod n + q1nLn−1,k−2 mod n + · · ·+ qn−1

n Ln−1,k−(n−1) mod n)

= pn
1−qnn

∑n
i=1 q

i−1
n Ln−1,(k−i) mod n

Since the game almost surely terminates, the probability of the kth player
winning in an n player game is simply 1− Ln,k

Using dynamic programming, Ln,k for all 1 ≤ k ≤ n can be computed in
O(n3) time. An example implementation in python:

#create diagonal half-matrix for memoization

L = [[0 for k in range(0, n + 1)] for n in range(0, max_players + 1)]

#base cases

for i in range(1, max_players + 1):

L[i][0] = 1

L[1][1] = 0

L[0][0] = None

#compute the probability of losing

for n in range(2, max_players + 1):

for k in range(1, n + 1):

sum = 0

for i in range(1, n + 1):

sum = sum + (1 - prob[n])**(i-1) * L[n - 1][mod(k - i, n)]

L[n][k] = prob[n]/(1 - (1 - prob[n])**n) * sum

Where prob[] is an array of the elimination probabilities (prob[i] = pi ∈ (0, 1]
or a symbolic variable if an appropriate library is available. (The experiments
described below were all conducted in Sage [2] which provides a symbolic
computing environment.)
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2.1 Bounds on the complexity of the solution

In the special case of p2 = p3 = ... = pn = p, Ln,k is the ratio of two

polynomials, each of degree at most n(n−1)
2

Proof. Base case: Ln,1 = 1 which is clearly the ratio of two polynomials each

of degree at most n(n−1)
2 = 0.

In general, Ln,k = p
1−(1−p)n

∑n
i=1(1−p)i−1Ln−1,(k−i) mod n. Note that

p
1−(1−p)n =

1
poly(n−1) (where poly(n−1) is a polynomial of degree n−1). The summation

is the sum of polynomials of degree at most (n− 1) multiplied by Ln−1,j for
some j, which is - by the inductive hypothesis - the ratio of two polynomials
each of degree at most (n − 2). The multiplication of two polynomials of
degrees n and m, yields a new polynomial of degree n + m. Thus, Ln,k is of
degree at most

∑n−1
i=0 i = (n− 1)n/2.

3 Speci�c solutions and experimental veri�cation

3.1 n = 2

The case n = 2 has a simple solution that matches well with intuition:

L2,1 = 1/(2− p2)
L2,2 = (1− p2)/(2− p2)

As the probability of elimination tends to 1, the probability that player 1 will
not be the survivor also tends to 1. With a probability of elimination near
0, the probability of each player being the survivor is very nearly 1/2.

To experimentally verify, a simulation of the game was run and the results
plotted against a graph of the probability of surviving vs. probability of
elimination.
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(Each point represents the percent games lost out of 10000 trials.)

3.2 n=3

With n ≥ 3 more interesting results are possible - a demonstrative example
is with p3 �xed at 1/2 and the probability of survival for each player (red=1,
blue=2, green=3) plotted against p2 below.
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(Each point represents 10000 simulations.)

As can be seen, for certain elimination probabilities, player 1 actually has
a better chance of winning then player 2! However, it appears (and indeed,
can be proven) that player 3 always has the best probability of winning,
regardless of which elimination probabilities are used.)

3.3 n > 3

Setting pn−1 = p2n, pn−2 = p3n . . . and plotting probability of survival (red=1,
orange=2, yellow=3, . . . ) against pn gives the following results:
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Setting pn = pn−1 = . . . = p2 and plotting probability of survival against pn
gives the following results:

(Similar behavior is observed for n < 6).

These results (and additional experimentation with various lists of elimina-
tion probabilities) are very suggestive and motivate several conjectures.

3.4 Conjectures

Ln,n ≤ Ln,k for all k, n, and pi's.

Given pn = pn−1 = . . . = p2, Ln,n ≤ Ln,n−1 ≤ ... ≤ Ln,1 for all n and
pn.

For all permutations k1, k2, . . . , kn−1 of 1, 2, . . . , n − 1 there exists pi's such
that Ln,k1 < Ln,k2 < · · · < Ln,kn−1 In other words, there always exists a
list of elimination probabilities such that sorting the players by Ln,k yields
every possible permutation of players - excluding player n who always has
the lowest probability of losing.
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With computer assistance, this last conjecture was directly proven up to
n = 6 by grid searching the space of elimination probability lists. Every
permutation of players' probability of survival was proven to be possible by
�nding a speci�c list of elimination probabilities that yields that permuta-
tion.

Unfortunately, naive grid search is exponential in n, and is computationally
intractable for n ≥ 7. A formal proof for all n remains elusive.
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