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Abstract

This paper examines brute-force, Gaussian, and FIGTree methods to create implicit surface approximations
of polygonal mesh. For the latter methods iterative procedures are used to solve vertex weights, allowing for
more form-fitting traces. All the tests are then run against differently-sized test sets and their performances
are compared. The merits of the FIGTree approach and its applications are examined.

I. Overview

In “Interpolating and Approximating Implicit
Surfaces from Polygon Soup” [1], the authors
discuss using implicit surface modeling to re-
pair problematic polygon meshes by approxi-
mating them as a summation of Gaussian func-
tions (known as a “blobby model”). However,
they cite the operation as prohibitive due to
the high runtime cost of computing the im-
plicit function. By using the FIGTree method
to estimate the implicit mesh instead of exact
Gauss with least squares regression the run-
ning complexity can be reduced from O(MN)
to O(M + N), where M is the number of basis
functions and N is the number of evaulation
points.

There is much practical value in a tool to
efficiently correct polygonal mesh. By convert-
ing to implicit mesh and back, problems such
as discontinuity (mismatched edges, holes, etc)
and duplicate features can be corrected in one
calculation. By varying the precision, level
of detail models can also be generated eas-
ily, which is useful for applications such as
computer games. Additionally there are times
when an implicit surface is more desirable than
its polygonal counterpart, such as when per-
forming collision testing. Thus, this process
has applications both in modeling and real-
time environments. It can also be useful for fur-

ther computation such as solving differential
equations since it allows the polygonal mesh
can be regenerated to have evenly-sized faces,
etc.

This paper will discuss the application of
FIGTree in tracing polygons and test the re-
sults against a naïve “brute force” approach
using k-nearest neighbor search and a non-
optimized blobby model construction using
Gaussian functions.

II. General algorithm

This algorithm will process polygonal meshes
represented as a set of n vertices and their cor-
responding faces. These values are scaled to lie
within the unit cube. We compute the normals
as the cross product of two adjacent edges on
a face. We want to find the implicit function

f (xi, yi, zi) = 0, i = 1, . . . , n (1)

where (xi, yi, zi) is a single vertex. To do this
we discretize the unit cube into a point ma-
trix according to a specified resolution, with
each point assigned a value relating its dis-
tance to the mesh. The values for each cell
can be determined according to a brute-force
approach, a more versatile Gaussian-based
method, or a FIGTree approximation of the
Gaussian method. Afterwards the native iso-
surface or marching cubes algorithm can de-
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termine the implicit equation from the grid of
values.

III. Brute-force approach

To determine the value at each cell, k-nearest
neighbor search is used to find the Euclidean
distance to the nearest vertex on the mesh
which serves as an estimate for the shortest
distance to the mesh surface. To find the im-
plicit equation, we want the isosurface such
that the distance to the mesh is zero. With the
discrete grid, we can determine that the figure
lies between the positive points (points outside
the mesh) and the negative points (points in-
side the mesh). In order to do this the distance
estimates must be signed. For this reason we
compute the angle between the vector to the
closest vertex and the normal at the vertex. The
value is signed as positive if the difference is
greater than 90 degrees, and signed as negative
otherwise. From this either the marching cubes
or built-in isosurface method can be used to
extract the surface.

Brute-force Algorithm

for point p ∈ meshgrid do
index, error ← knnsearch(vertices, p)
p′ ← vertex[index]
vec← p− p′

angle ← atan(norm(normal[index] ×
p′), normal[index] · p′)

outputp ← sign(angle− π) · error
end for

Efficiency

For N vertices enclosed in a three-dimensional
space composed of M cells, this algorithm re-
quires O(M log N) time to populate the grid.
This is because for each point in the space the
nearest vertex must be found, and the vertices
are stored in a k-d tree by default for the search
call. The isosurface tracing portion of the algo-
rithm will require O(M3) time, however this
is present in all forms of this algorithm and is

not dependent on the vertex complexity N of
the polygonal mesh.

IV. Preconditioning Weights

Instead of having each point in space be in-
fluenced by the nearest vertex, we can con-
struct an interpolation using n blobby func-
tions. However, when summing the influence
of mesh vertices, often times we find some
vertices should have more impact than others.
This is because the distribution of vertices on
the model surface may not be uniform and
closely clustered vertices will exert more in-
fluence on the resulting implicit mesh than
isolated vertices (see Figure 1.) To address this,
we attempt to solve the interpolation problem
by identifying fixed points where the isovalue
must conform and employ a generalized mini-
mum residual method to estimate weights for
each vertex. [2]

Figure 1: (Above) Plane model with no vertex
weighting, (Below) plane model with weights. Note
the more tapered features on the weighted figure in
areas with more vertex detail.
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Implementation

To find the fixed points, we take each vertex,
find its corresponding “off-point” by traversing
a certain amount δ along its normal, and fixing
that to be a certain value

f (xi + δnxi , yi + δnyi , zi + δnzi ) = α (2)

(we will use α = 1 in this case). This provides a
rough isosurface sample to match against. The
generalized minimum residual method is an
iterative procedure which solves the equation

Ax = b, Aij =
1

σ
√

2π
e−

(pi−pj)
2

2σ2 (3)

for x, our weights. A is a linear transform,
supplied by the method of our choosing. [3]
Each term in the matrix is a Gaussian func-
tion evaluated between two points in our set,
pi and pj. The bandwidth, σ is provided by
the user and will vary based on the model.
In our tests this was typically found through
trial-and-error. The matrix is provided as a clo-
sure function with all parameters including the
vertices and off-points supplied. Solving the
linear system with Gauss requires O(M3) op-
erations due to the required back-substitution.
FIGTree requires O(M) operations by employ-
ing iterative approximations, avoiding back-
substitution. [4][5] b is a matrix of the values
corresponding each off-point. The method ini-
tially guesses the zero solution and iteratively
refines the estimate until a desired epsilon is
reached or the maximum number of iterations
has occurred (which was the case in our trials).
These weight estimates are then fed back into
the function when evaluating the spatial matrix
for the actual values (see Figure 2 for a compar-
ison of the original model with normals and
its trace.)

Figure 2: (Left) Original Budda model with normals
highlighted, (Right) FIGTree trace.

V. Gaussian Implementation

The Gaussian summation function takes a list
of vertices, a list of evaluation points, a list
if weights per vertex, and a bandwidth. For
each point it finds the distance to each vertex,
calculates the influence of that particular ver-
tex by evaluating a one-dimensional Gaussian
with the specified bandwidth at the value corre-
sponding to the distance between the point and
the vertex. These influences are then multiplied
by their corresponding weights and summed
per point. This summation function is used
once for the generalized minimum residual
method to compute weights and then run again
at each spatial point to recover the actual iso-
values.

Gaussian Algorithm

for index = 1→ n do
o f f points[index] ← vertex[index] + δ ·

normal[index]
Let f (weights) = gaussian(vertex,

o f f points, weights, bandwidth)
weights← gmres( f , α)

end for
output ← gaussian(vertex, o f f points,
weights, bandwidth)
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Efficiency

The efficiency of Gaussian summation is
O(MN) since for every point in the space, the
Gaussian at each vertex must be evaluated and
summed. There is an additional O(M3) term
if weighting is applied due to solving the in-
terpolation problem. This is slower than the
brute-force approach but allows for more fine-
tuned controls for each vertex’s contribution
and will more often produce smoother results.

VI. FIGTree Implementation

First the generalized minimum residual
method is run using FIGTree to compute
weight estimates for each vertex. Then the
vertex list, weights, and array of spatial points
is passed to the FIGTree algorithm, which se-
lects an epsilon-exact estimate for the sum of
influences at each point.

FIGTree Algorithm

for index = 1→ n do
o f f points[index] ← vertex[index] + δ ·

normal[index]
Let f (weights) = FIGTree(vertex,

bandwidth, weights, o f f points, error)
weights← gmres( f , α)

end for
output ← FIGTree(vertex, bandwidth,
weights, o f f points, error)

Efficiency

Finding the potentials in the three-dimensional
grid requires O(M + N) time, an improvement
over the previous O(M log N) time under the
brute-force approach and the O(MN) time re-
quired by the Gaussian method.

Accuracy

When applying the FIGTree algorithm, there
are four primary factors which affect the accu-
racy of the resulting isosurface. The first is the
subdivision of the three-dimensional grid. A
higher resolution would lead to more accurate

results since more samples would be computed.
A lower resolution might be desirable though
for creating simplified meshes for applications
such as level-of-detail-models (see Figure 3.)
The second is the mesh complexity. More ver-
tices correspond to more sources for Gaussians
which lead to more fine-grained results. Third
is the kernel bandwidth for the Gaussian func-
tion. If the bandwidth is too high, the surface
would be loosely-fitted. If the bandwidth is
too low, the surface would have dips between
vertices. Lastly is the error cutoff. A higher tol-
erance would lead to less accurate estimates at
each point and allow for looser surfaces, while
a lower one would not.

Figure 3: (Above) Stanford bunny traced via
FIGTree at a resolution of 20, (Below) same model
traced via FIGTree at a resolution of 100.
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VII. Results

To compare the three implicit mesh algorithms
we sample a number of points on the unit
sphere and run the each algorithm on the set.
For the Gaussian and FIGTree methods the
bandwidth and normal offset were kept fixed
but the isovalue was allowed to vary per set
since the output of the weight estimation could
vary. All tests were run at a unit resolution of
10 (see Table 1.)

The brute-force approach has the crudest
reconstruction, owing to using the nearest ver-
tex as an estimate and applying no smooth-
ing function. This is especially apparent in
the smaller sample sets, which exhibit large
bumps and even tearing. The Gaussian method
produced much better reconstructions, likely
due to the bandwidth smoothing the results.
The residual for the weight estimations is quite
large though, with a residual of 200 on the 500
set. This indicates a large error at the end of
the iteration, however the spherical distribu-
tion of the data set hides this fact. On the 500
set the Gaussian method took over 400 seconds,
which renders the method largely impractical,
even compared to the brute-force method. The
Gaussian method was not run on the 5000 set
due to the substantial run time required. The
FIGTree method yields good reconstructions at
all levels, with weight residuals below 1/100
for each. The time to compute each set is also
much quicker than the other methods, with the
time for the 5000 set beating the times for both
brute-force and Gauss on the 50 set.

VIII. Conclusion

On our test set, the FIGTree method ran the
fastest at all levels and also had the lowest

residual error for weighting, indicating quick
convergence. Additionally, since the iteration
number for the generalized minimum residual
method and FIGTree error can be specified for
each use, the algorithm can be made arbitrar-
ily precise such that it produces no additional
error over Gauss. Because of these factors it
makes an excellent candidate for tracing im-
plicit mesh. Additional results from traces can
be seen below (see Table 2.)

IX. Future Work

A problem encountered while testing the
FIGTree method was that the parameters for
bandwidth, grid resolution, and error margins
needed to be chosen through trial-and-error for
the best results. It would be better if these pa-
rameters were automatically selected based on
the user’s needs. One solution could be to pro-
vide a toolbox where the user could specify the
level of detail to preserve and noise tolerance,
and have an algorithm select the parameters
from there. This would lessen the work needed
to acquire ideal results and greatly extend the
usefulness of the method. Other specific opti-
mizations that could be made to the algorithm
include applying it to geometry captured by
3D scanners, in which the vertex density is
relatively consistent, and to generating level-
of-detail models in which we would want to
preserve prominent details while also simpli-
fying extraneous geometry. While the FIGTree
method won’t be fast enough for real-time use
in most cases, it still greatly outspeeds the other
methods and can be used for pre-computation
in most use cases where implicit surface tracing
is common today.
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A. Comparisons

Method 50 points 500 points 5000 points

Brute-force

Gaussian (No image)

FIGTree

Table 1: Visual comparison of each method based on random sampling of a sphere.
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B. Measurements

The following are the parameters used to produce the results for each image. The running time and
generalized minimum residual are also included (if applicable). For FIGTree, the allowable error threshold
is listed as well. All tests were performed on an Intel Core-i5 machine with default RAM allocations.
Brute-force and Gaussian tests were run in 64-bit MATLAB 2012b, while FIGTree tests were run in 32-bit
MATLAB 2010a for compatibility reasons.

Image Time (s) Resolution
Normal

offset
Bandwidth Threshold Isovalue

Residual
error

Plane w/
weights

0.266152 40 0.001 0.025 0.0001 0.5 0.025

Buddha
statue

3.950326 100 0.001 0.005 0.0001 0.025 0.0068

Low-res
bunny

15.141674 20 0.005 0.02 0.0001 0.05 0.012

High-res
bunny

3.864089 100 0.005 0.005 0.0001 0.025 0.087

Brute w/
50

12.892367 10 N/A N/A N/A 0 N/A

Brute w/
500

25.974247 10 N/A N/A N/A 0 N/A

Brute w/
5000

108.063739 10 N/A N/A N/A 0 N/A

Gauss w/
50

24.329785 10 0.01 1 N/A 19.5 18

Gauss w/
500

462.369360 10 0.01 1 N/A 199.417 200

FIGTree
w/ 50

0.024721 10 0.01 1 0.0001 1.2 0.00026

FIGTree
w/ 500

0.236726 10 0.01 1 0.0001 1.2 0.00099

FIGTree
w/ 5000

1.175478 10 0.01 1 0.0001 1.2 0.00018

Table 2: All parameters for presented images

C. Code

To execute the code, first run either genSphere.m or loadModel.m to construct the geometry. The
toolbox_graph library is used to read .ply files and must be on the same path for loadModel.m to work.
[6] Then run runBrute.m, runGauss.m, or runTree.m to generate output for the brute-force method,
Gaussian method, or FIGTree method, respectively.
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gaussian.m

1 function output = gaussian(vertex ,list ,weights ,bandwidth)

2 output = zeros(size(list , 1), 1);

3 for h = 1 : size(list , 1)

4 for j = 1 : size(vertex , 1)

5 output(h) = output(h) + normpdf(0, pdist([list(h,:);

vertex(j,:)])*weights(j), bandwidth);

6 end

7 end

8 end

genSphere.m

1 % generate point cloud

2 n = INPUT_NUMBER_HERE; % number of sample points

3 vertex = zeros(n,3);

4 for i = 1 : n

5 phi = 2*pi*rand (1);

6 theta = 2*pi*rand (1);

7 vertex(i,1) = sin(phi)*cos(theta);

8 vertex(i,2) = sin(phi)*sin(theta);

9 vertex(i,3) = cos(phi);

10 end

11 normal = vertex;

12 res = INPUT_NUMBER_HERE; % set the desired resolution

loadModel.m

1 % load model

2 name = 'airplane.ply';

3 options.name = name;

4 [vertex ,faces] = read_ply(name);

5 vertex = vertex/SCALING_FACTOR; % correct model to lie within unit

cube

6 [normal ,normalf] = compute_normal(vertex ,faces);

7 options.normal = normal;

8

9 % render

10 clf; plot_mesh(vertex ,faces ,options); shading interp; axis tight;

11 options.normal = [];

12

13 normal = normal.';

14 res = INPUT_NUMBER_HERE; % set the desired resolution
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15 isovalue = INPUT_NUMBER_HERE; % the value at which to trace the

surface

runBrute.m

1 % create meshgrid

2 [x,y,z] = meshgrid(-res:res ,-res:res ,-res:res);

3 data = zeros(size(x,1),size(x,2),size(x,3));

4

5 tic;

6

7 % compute nearest point for data

8 for i = 1 : size(x,1)

9 for j = 1 : size(x,2)

10 for k = 1 : size(x,3)

11 a = [x(i,j,k),y(i,j,k),z(i,j,k)]/res;

12 [idp ,r] = knnsearch(vertex ,a);

13 b = a-vertex(idp ,:);

14 % sign with the normal

15 angle = atan2(norm(cross(normal(idp ,:),b)),dot(normal(

idp ,:),b));

16 data(i,j,k) = sign(angle -1.5708)*r*res;

17 end

18 end

19 end

20

21 toc;

22

23 % render

24 s = isosurface(x,y,z,data ,isovalue);

25 p = patch(s);

26 isonormals(x,y,z,data ,p);

27 set(p,'FaceColor ','red','EdgeColor ','none');

28 view (3); daspect ([1 1 1]); axis tight;

29 camlight;

30 lighting gouraud;

runGauss.m

1 offset = INPUT_NUMBER_HERE; % displacement amount along normal

2 bandwidth = INPUT_NUMBER_HERE; % gaussian parameter

3

4 % create meshgrid

5 [x,y,z] = meshgrid(-res:res ,-res:res ,-res:res);

6 data = zeros(size(x,1),size(y,2),size(z,3));
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7

8 % build eval points

9 r = 2*res+1;

10 list = zeros(r^3,3);

11 for i = 1 : size(x,1)

12 for j = 1 : size(y,2)

13 for k = 1 : size(z,3)

14 list((i-1)*r^2+(j-1)*r+k,1) = (i-res)/res;

15 list((i-1)*r^2+(j-1)*r+k,2) = (j-res)/res;

16 list((i-1)*r^2+(j-1)*r+k,3) = (k-res)/res;

17 end

18 end

19 end

20

21 tic;

22

23 % apply pcg for weights

24 offpts = zeros(size(vertex ,1) ,3);

25 fixed = ones(size(vertex ,1) ,1);

26 for i = 1 : size(vertex ,1)

27 offpts(i,:) = vertex(i,:) + offset*normal(i,:);

28 end

29 weights = gmres(@(p) gaussian(vertex ,offpts ,p,bandwidth), fixed);

30

31 % sum gaussians

32 output = gaussian(vertex , list , weights , bandwidth);

33

34 for i = 1 : size(x,1)

35 for j = 1 : size(y,2)

36 for k = 1 : size(z,3)

37 data(i,j,k) = output ((i-1)*r^2+(j-1)*r+k);

38 end

39 end

40 end

41

42 toc;

43

44 % render

45 s = isosurface(x,y,z,data ,isovalue);

46 p = patch(s);

47 isonormals(x,y,z,data ,p);

48 set(p,'FaceColor ','red','EdgeColor ','none');

49 view (3); daspect ([1 1 1]); axis tight;

50 camlight;

51 lighting gouraud;
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runTree.m

1 offset = INPUT_NUMBER_HERE; % displacement amount along normal

2 bandwidth = INPUT_NUMBER_HERE; % gaussian parameter

3 error = INPUT_NUMBER_HERE; % precision level for FIGTree

4

5 % create meshgrid

6 [x,y,z] = meshgrid(-res:res ,-res:res ,-res:res);

7 data = zeros(size(x,1),size(y,2),size(z,3));

8

9 % build eval points

10 r = 2*res+1;

11 list = zeros(3,r^3);

12 for i = 1 : size(x,1)

13 for j = 1 : size(y,2)

14 for k = 1 : size(z,3)

15 list(1,(i-1)*r^2+(j-1)*r+k) = (i-res)/res;

16 list(2,(i-1)*r^2+(j-1)*r+k) = (j-res)/res;

17 list(3,(i-1)*r^2+(j-1)*r+k) = (k-res)/res;

18 end

19 end

20 end

21

22 tic;

23

24 % apply pcg for weights

25 offpts = zeros(size(vertex ,1) ,3);

26 fixed = ones(size(vertex ,1) ,1);

27 for i = 1 : size(vertex ,1)

28 offpts(i,:) = vertex(i,:) + offset*normal(i,:);

29 end

30 weights = gmres(@(p) figtree(vertex.',bandwidth ,p,offpts.',error),

fixed);

31

32 % run figtree

33 output = figtree(vertex.',bandwidth ,weights ,list ,error);

34 for i = 1 : size(x,1)

35 for j = 1 : size(y,2)

36 for k = 1 : size(z,3)

37 data(i,j,k) = output ((i-1)*r^2+(j-1)*r+k);

38 end

39 end

40 end

41

42 toc;

43
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44 % render

45 s = isosurface(x,y,z,data ,isovalue);

46 p = patch(s);

47 isonormals(x,y,z,data ,p);

48 set(p,'FaceColor ','red','EdgeColor ','none');

49 view (3); daspect ([1 1 1]); axis tight;

50 camlight;

51 lighting gouraud;
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