
Froid: Functional Reactive Android

James Parker
Department of Computer Science

University of Maryland, College Park
College Park, MD

jp@jamesparker.me

ABSTRACT
In this paper, we present Froid (Functional Reactive An-
droid). Froid is a proof of concept Android library that
addresses the problem introduced by callbacks in GUI pro-
gramming. The library allows developers to create appli-
cations using the functional reactive programming model.
Specifically, programmers using Froid are able to take ad-
vantage of EventStreams and Behaviors in their programs.
EventStreams are discrete valued objects that correspond to
events, such as button clicks or manipulating text within a
text box. On the other hand, Behaviors model continuous
valued entities, such as the current time. EventStreams and
Behaviors are convenient for developers because functional
reactive programs automatically update whenever new events
occur. To show Froid in action, we also provide a few demo
applications and compare them to traditional applications.

1. INTRODUCTION
A problem with GUI programming is that it can be painful
due to its use of callbacks. Callbacks split up control flow
and make code harder to read. This forces the programmer
to know the event model of the system and remember how
every piece of his application interacts. Oftentimes, this can
be extremely difficult and leads to confusion. As a result,
code is written which introduces bugs affecting behavior and
stability. We call this situation callback hell. Android ap-
plication programming is also a kind of GUI programming,
and thus it suffers from this problem as well.

One solution to callback hell is functional reactive program-
ming (FRP). The main idea behind FRP is that it intro-
duces EventStreams and Behaviors [3]. These objects are
special because their values can change over time. This is
convenient for programmers since they can work with these
objects abstractly, while computations are automatically up-
dated whenever the value of one of these objects changes.
What makes this possible is that each EventStream or Be-
havior has a set of dependencies. Each dependency is either
an EventStream or Behavior whose value depends on the

original object’s value. This approach addresses the prob-
lem of callback hell because it allows a sequence of callbacks
to be composed directly. The resulting control flow of a
program becomes more apparent. In the end, the devel-
oper is left with code that is more compositional since it is
easy to compose a current computation with another sub-
computation that refines it in some way.

Functional reactive programming has typically been applied
in functional programming languages (notably Haskell and
Scheme). For instance, Cooper introduced FrTime as an
FRP implementation for Racket, a derivative of Scheme [1].
On the other hand, FRP has seen little use in Java, which is
the programming language of Android. Moreover, functional
reactive programming has never been used for Android in
particular. In this project, we set out to design a FRP li-
brary on top of the standard Android APIs and to evaluate
its utility by using it to build several simple applications.
Through this process, we found that by supplementing Java
generics, we could define reusable FRP abstractions to de-
velop some proof-of-concept applications.

This paper begins by describing FRP in greater detail. It
then introduces Froid, our FRP library for Android. Next,
we go over a few example applications which show the li-
brary in action. The following section compares our FRP
examples to traditional Android programs. Finally, we draw
conclusions and consider future work.

2. FUNCTIONAL REACTIVE PROGRAM-
MING

The core of functional reactive programming relies on the
concepts of EventStreams and Behaviors. The basic princi-
ple is that these two structures represent values over time.
EventStreams are discretely defined with respect to time
and can represent events such as button clicks. Conversely,
Behaviors are continuously defined and model events like
the current time. Whenever the value of an EventStream
or Behavior changes, an event fires and propagates to the

EditText textbox;

EventStream<String> eventStream =

Utilities.text(textbox);

Behavior<String> behavior =

Utilities.hold(eventStream, "");

Listing 1: Android code that initializes an EventStream and
a Behavior to the values of a text box.

t0 t1 t2 t3 t4 t5

“”

“F”

“Fr”

“Fro”

“Froi”

“Froid”

EventStream Values vs. Time

Time (Events)

Va
lu

es
 (S

tr
in

gs
)

Figure 1: EventStream values as a user types “Froid”
into a text box.

EventStream’s or Behavior ’s dependencies. Since the event
contains the value of the EventStream or Behavior, the de-
pendencies are able to recompute their values. They then
trigger a new event with their updated values, which creates
a chain reaction until all subsequent dependencies have been
updated.

To illustrate the differences between EventStreams and Be-
haviors, we refer to Figures 1 and 2. Each graph displays
the values of either an EventStream or a Behavior over time.
The values on the y-axis correspond to string values as a
user types the word “Froid” into a text box. In the graphs,
each event ti occurs whenever the text box’s value is modi-
fied. As the reader can see, the EventStream is only defined
at the instants when these typing events occur. It is also
apparent that the Behavior is continuously defined, and it
takes on the value associated with the latest event. Listing
1 shows code to initialize such an EventStream or Behavior
using the Froid library. Section 3 will go into more detail
about the API, but basically the method text creates an
EventStream out of a text box, while the function hold lifts
the EventStream to a Behavior with an initial value of the
empty string.

In actual implementations, Behaviors cannot truly be con-
tinuous over time due to hardware limitations. Therefore,
implementations are approximations of true Behaviors. This
could potentially cause problems because it could change
how a program is actually executed. Wan et al. address this
issue by showing that if time is discretized enough, imple-
mentations of FRP programs satisfy formalized, continuous
semantics, as long as Behaviors satisfy certain conditions
[6].

3. FROID
Froid (Functional Reactive Android) is a proof of concept
Android library that allows developers to create applications
using the functional reactive programming model. Other
applications can make use of Froid in their projects by im-
porting it as an Android library.

t0 t1 t2 t3 t4 t5

“”

“F”

“Fr”

“Fro”

“Froi”

“Froid”

Behavior Values vs. Time

Time (Events)

Va
lu

es
 (S

tr
in

gs
)

Figure 2: Behavior values corresponding to the same
EventStream as before.

public class EventStream<T> {

// Constructor that sets the type of the

// Behavior’s generic.

public EventStream(Class<T> t);

// Returns the type of the Behavior’s generic.

public Class<T> getType();

// Sets value for current event.

public final void setValue(T v);

// Add listener l.

public final void addListener(Listener l);

// Remove listener l.

public final void removeListener(Listener l);

}

Listing 2: EventStream class’ method signature.

public class Behavior<T> extends EventStream<T> {

// Constructor that just calls

// super’s constructor.

public Behavior(Class<T> t);

// Returns the event corresponding to

// the behavior’s current value.

public final Event<T> getEvent();

// Force an update to listeners.

public final void forceUpdate();

}

Listing 3: Behavior class’ method signature.

public final class Utilities {

// Lifts a function call to a Behavior.

// All the arguments can optionally be wrapped by

// a Behavior, but not an EventStream!

// Throws an IllegalArgumentException if any

// arguments are EventStreams.

// ’a -> String (’a -> ... -> ’r) -> ... ->

// Behavior ’r

public static Behavior lift(final Object target,

String func, final Object... args);

// Calls a function with static arguments when

// EventStream i updates. The return value of

// the function is ignored. Typically used to

// invoke side effects.

// EventStream -> a -> (a -> ... -> r) -> ... ->

// ()

public static void trigger(EventStream i,

final Object target, String func,

final Object... args);

// Get the time Behavior.

// () -> Behavior Time

public static Behavior<Time> time();

// Returns an EventStream that subscribes v

// for click events.

// Throws IllegalArgumentException if v is null.

// View -> EventStream View

public static EventStream<View> clicks(View v);

// Returns an EventStream that subscribes v for

// key events.

// Throws IllegalArgumentException if v is null.

// View -> EventStream Character

public static EventStream<Character> keys(

View v);

// Returns an EventStream that subscribes v for

// changes to its text content.

// Throws IllegalArgumentException if v is null.

// TextView -> EventStream String

public static EventStream<String> text(

TextView v);

// Returns an EventStream that subscribes s

// for selections.

// Throws IllegalArgumentException if s is null.

// Spinner -> EventStream String

public static EventStream<String> selects(

Spinner s);

/* Combinators */

// Merges two EventStreams.

// EventStream ’a -> EventStream ’a ->

// EventStream ’a

static public <T> EventStream<T> merge(

final EventStream<T> e1,

final EventStream<T> e2);

// Lift an object into a constant behavior.

// ’a -> Behavior ’a

static public <T> Behavior<T> constant(T o);

// Acts like Behavior b1 until EventStream e

// occurs. After that, it acts like Behavior b2.

// Behavior ’a -> Event ’b -> Behavior ’a ->

// Behavior ’a

static public <T> Behavior<T> until(

final Behavior<T> b1, final EventStream e,

final Behavior<T> b2);

// Snapshot of a behavior when an event occurs.

// EventStream a -> Behavior b ->

// EventStream (a*b)

static public <T,U> EventStream<Tuple<T,U>>

snapshot(EventStream<T> e,

final Behavior<U> b);

// Filter the events that satisfy the boolean

// function f.test.

// EventStream ’a -> Filter ’a -> EventStream ’a

static public <T> EventStream<T> filter(

EventStream<T> e, final Filter<T> f);

// Converts an event stream into a behavior.

// Initializes the value of the behavior to init.

// Throws IllegalArgumentException if init

// is null. (maybe)

// EventStream ’a -> ’a -> Behavior ’a

static public <T> Behavior<T> hold(

EventStream<T> e, T init);

// Converts a behavior into an event stream.

// Behavior ’a -> EventStream ’a

static public <T> EventStream<T> changes(

Behavior<T> b);

}

Listing 4: Method signatures for the Utility class.

As an Android library, Froid is implemented in Java, which
is imperative rather than functional. The library uses the
class EventStream to represent EventStreams, and the class
Behavior for Behaviors. The EventStream and Behavior
class’ method signatures can be found under Listings 2 and 3
respectively. The framework aims to make the creation and
manipulation of EventStream and Behavior objects intuitive
and compositional.

It is important to note that in the implementation,
EventStreams and Behaviors are both discrete. For instance,
the time Behavior should theoretically be continuous, but
its value is actually just updated every half second. This
makes it reasonable for the Behavior class to inherit from
the EventStream class with a few addition methods. In par-
ticular, the Behavior class adds a method called getEvent
that returns an Event object containing the current value
of a Behavior. This is needed because Behaviors are de-
fined over all time, while EventStreams are not. It is also
worth mentioning that the Event class is basically a tuple
of a value and a timestamp of when the event occurred.

The reader should also notice that constructors for Behav-
iors and EventStreams require the types of their values on
creation. This allows the API to perform some type check-
ing when the library is loaded. This is also required because
Java removes all generic types at compile-time, and some
methods in the library use type information at run-time.

Froid handles the propagation of events behind the scenes.
Each EventStream or Behavior maintains a list of its depen-
dencies. Whenever its value is manipulated, a new event is
created. This event is then sent to all the dependencies so
that subsequent EventStreams and Behaviors can update.

We now highlight some of the commonly used methods in the
library. All of these methods are found in the Utilities class
and their method signatures are shown in Listing 4. Lift
is probable one of the more interesting methods. It takes
a regular function and lifts it so that it can take Behav-
iors as parameters and returns a new Behavior itself. This
is extremely useful because it allows developers to use any
previously implemented methods in their FRP programs.
Implementing this operation is a little tricky. To find the
actual function being lifted, the function name and type
signature must be examined to get the appropriate method
back from the runtime. Then each of the arguments (and
the caller) must be checked to see if they are Behaviors. All
Behavior arguments must add the new lifted Behavior as a
dependency so that events propagate to the method previ-
ously retrieved from the runtime.

Another library function, time, simply returns the time Be-
havior, except its type is the Android library’s T ime class.
This allows programmers to make use of built in operations
when working with the time. This Behavior is also a single-
ton object because there only needs to be one of them.

Clicks, text, and selects are all fairly similar in that they
are EventStreams whose values correspond to user interface
items. Clicks sends an event when the specified button is
pressed. Text updates if the value of a textfield changes.
Selects corresponds to the string value of a spinner, which
is similar to an HTML radio form.

Froid also offers combinators to work with EventStreams and
Behaviors. These functions are powerful in that they enable
multiple EventStreams and Behaviors to join together. The
result is an EventStream or Behavior that is dependent on
events propagating from both sources.

An example of this is the filter combinator which tests an
EventStream against a boolean function defined by the pro-
grammer. If the EventStream fails the test, filter will pre-
vent that event from propagating, thereby halting any de-
pendent computations.

The merge operation is another combinator that provides a
way to combine two EventStreams of the same type into a
single EventStreams. It works by making itself a dependent
of both EventStream parameters, and then it passes along
any event it receives.

The until operator works a little differently. When first ini-
tialized, it takes on the values of the first Behavior. Mean-

public class ClockActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

LinearLayout layout = new LinearLayout(this);

layout.setOrientation(LinearLayout.VERTICAL);

TextView label = new TextView(this);

label.setGravity(Gravity.CENTER_HORIZONTAL);

Behavior<Time> time = Utilities.time();

Behavior<String> s =

Utilities.lift(time, "format", "%I:%M:%S%p");

Utilities.lift(label, "setText", s);

layout.addView(label);

setContentView(layout);

}

}

Listing 5: Clock application using Froid.

while, it listens for an event from the second parameter,
which is an EventStream. Once an event occurs, it stops
listening to the EventStream and starts behaving as the last
Behavior parameter.

4. EVALUATION
Here we evaluate Froid by implementing a few simple pro-
grams using the library. We then compare these programs
to traditional implementations of these same programs.

4.1 Demo Applications
To demonstrate an application that uses Froid, we present
a simple clock application. Its source is displayed in Listing
5 and the program simply shows the current time on the
screen. Besides setting up the user interface, the program-
mer only needs to perform a few steps. First, he requests the
time Behavior from the library. Then he lifts the built-in
function to format the time and receive a string Behavior.
All that is left to do is display the resulting string by lifting
the label’s setText method.

In addition to the clock application, we provide two more
example applications. One is a program that calculates and
displays the radius of a circle over time. Basically, what
happens is the radius initially has a constant value of 5.0
until five seconds have passed. After that, the radius oscil-
lates sinusoidally over time. This example is interesting in
that it uses a filter to halt further propagation of events.
Once the condition that five seconds have passed, events are
once again allowed to propagate and the radius starts its
oscillation.

The last program is a simple calculator that takes two nu-
meric values from a text box and performs a mathematical
operation specified by a spinner. Events are triggered by
keystrokes in the text boxes or changes to the selected op-
eration. The output label is then automatically updated
based to the computed result that was propagated by the
event. For example, if the inputs are initially 6, +, and 3,
and the spinner operator is changed to *, this event propa-

public class ClockActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

LinearLayout layout = new LinearLayout(this);

layout.setOrientation(LinearLayout.VERTICAL);

final TextView label = new TextView(this);

label.setGravity(Gravity.CENTER_HORIZONTAL);

final Handler h = new Handler();

Runnable r = new Runnable() {

public void run() {

Time t = new Time();

t.set(System.currentTimeMillis());

label.setText(t.format("%I:%M:%S%p"));

h.postDelayed(this, 500);

}

};

h.post(r);

layout.addView(label);

setContentView(layout);

}

}

Listing 6: Standard Android clock application.

gates and the output label automatically changes from 9 to
18. The code for these last two applications can be found in
Appendex A.

4.2 Comparison
To compare FRP programs to traditional Android applica-
tions, we implement each example FRP application in nor-
mal, imperative Java. We find that the FRP code is more
compositional and more intuitive to write. For instance,
compare the two clock applications shown in Listings 5 and
6. In the FRP implementation, code is simply chained to-
gether based on what it is dependent on. The time Behav-
ior is initially retrieved from the Froid library. Then the
Behavior of a string s is defined, that updates based on the
current value of time. Finally, the text of the view, label,
continuously displays the current value of s. This chaining
seems simpler and more straightforward than the standard
Android version. It definitely achieves composition, which
is one of the goals of this work.

To continuously update the clock label with the current
time, a Handler h has to be introduced in the traditional
application. The Handler h then calls run in the Runnable
r which gets the current time, formats it, updates the label,
and then tells h to call itself again in half a second. The FRP
version is more straightforward because Froid takes care of
all the dependencies on time and completely eliminates the
use of callbacks and handlers.

Without Froid, the imperative implementations also tend to
accumulate anonymous inner classes. This make code harder
to read and can also create scoping issues. If a developer
wishes to refer to variables defined outside of the anonymous

inner class, he must declare it as final which limits his
ability to modify that variable later. Looking at the clock
example again, this problem is seen where r is defined as an
anonymous inner class implementing the interface Runnable
so both of the variables label and h are forced to be final.

Another property of FRP programs is that they can be ex-
pressed more concisely. The total number of lines of code for
the traditional applications is 295, while the FRP analogs
are only 221 lines. This is a 25% reduction in code which
seems significant and would allow developers to be more ef-
ficient.

The other two applications implemented without Froid are
shown in Appendix B. Comparing the two versions of the
calculator applications again highlights the benefits of using
Froid. For instance, the Froid version only has 71 lines of
code while the traditional version has 104 lines of code. In
addition, the traditional Android program has three anony-
mous inner classes, while the FRP implementation has none.
This results in cleaner and more compositional code.

5. CONCLUSIONS AND FUTURE WORK
Froid’s library serves as a proof of concept system for func-
tional reactive programming in Android. It has even been
shown to have benefits over traditional styles of program-
ming by addressing the issue of callback hell. That being
said, Froid still has a few limitations. One thing to notice
is that Froid does incur some overhead. This may hinder
application performance as programs grow larger and more
complex. Another issue is that Froid cannot always type
check objects when the library is loaded. This could lead to
run-time errors, especially when objects have more compli-
cated types.

It is left to future work to address these issues, however we
propose a few possible solutions. To study the impact of
overhead, one could develop a full-fledged Froid application
and monitor its performance. It might also prove worth-
while to investigate whether optimizations can be made to
the library. To improve the issue of type safety, a more ad-
vanced data structure could be developed that keeps track
of advanced types. This would still have problems though
because it would still be difficult to associate types with
method signatures. For instance, assume a Behavior has
type Tuple < String, Integer >. During run-time, these
generics are given the general type Object. At this point,
how does one tell whether the return type of the function
getF irst is a String rather than an Integer? Perhaps a bet-
ter solution is to build a target language that would compile
into Java using Froid. This language could perform static
type checking and could even automatically lift primitives
as needed.

Many other research projects have studied the viability of
functional reactive programming. Elliot and Hudak laid
much of the groundwork for FRP when they presented Func-
tional Reactive Animation [3]. Their implementation is one
of the most influential, and it describes many of the com-
binators used in Froid’s library. Cooper’s thesis presented
FrTime, which was a significant contribution as an FRP im-
plementation for Scheme [1]. Courtney’s work on Frappe is
more related to Froid because it targets Java programs, but

not the Android environment directly [2]. Nicolas Teirlinckx
is currently a masters student at the Vrije Universiteit Brus-
sel. He is studying FRP in Android so his thesis should be
very related once complete. He also has a blog post that
lists many prominent papers in FRP, which has served as
a great resource [5]. FRP is not the only way to address
callback hell. Khoo et al. address this problem in the case
of JavaScript by using a generalization of monads to guide
control flow [4].

The author would like to recognize his colleagues Nataliya
Guts and Kristopher Micinski for their input while working
on this project. He would also like to thank his advisors,
Dr. Foster and Dr. Hicks, for their guidance during this
independent study.

6. REFERENCES
[1] Gregory Cooper. Integrating Dataflow Evaluation into a

Practical Higher-Order Call-by-Value Language. PhD
thesis, Brown University, 2002.

[2] Antony Courtney. Frappe: Functional reactive
programming in java. In Proceedings of the Third
International Symposium on Practical Aspects of
Declarative Languages, PADL ’01, pages 29–44,
London, UK, UK, 2001. Springer-Verlag.

[3] Conal Elliott and Paul Hudak. Functional reactive
animation. In International Conference on Functional
Programming, 1997.

[4] Yit Phang Khoo, Michael Hicks, Jeffrey S. Foster, and
Vibha Sazawal. Directing JavaScript with arrows. In
Proceedings of the ACM SIGPLAN Dynamic Languages
Symposium (DLS), pages 49–58, October 2009.

[5] Nicolas Teirlinckx. Functional reactive programming
and further explorations.
http://nteirlin.tumblr.com/post/10416917102/thesis-
functional-reactive-programming-and-further,
2011.

[6] Zhanyong Wan and Paul Hudak. Functional reactive
programming from first principles. In Proceedings of the
ACM SIGPLAN 2000 conference on Programming
language design and implementation, PLDI ’00, pages
242–252, New York, NY, USA, 2000. ACM.

APPENDIX
A. APPLICATION CODE WITH FROID
public class CircleActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.circle);

// Find "Finish" button and create click stream.

Button b =

(Button) findViewById(R.id.button1);

EventStream<View> clicks =

Utilities.clicks(b);

Utilities.trigger(clicks, this, "finish");

// Initial constant radius of 5.

Behavior<Double> r0 = Utilities.constant(

new Double(5.0));

// Compute the radius as a continuous function

// of time.

Behavior<Time> time = Utilities.time();

Behavior ms = Utilities.lift(

time, "toMillis", true);

Behavior<Double> rt = Utilities.lift(this,

"computeRadius", ms);

// Initialize r as a constant for 5 seconds,

// and then switch to a function of time.

EventStream filtered = Utilities.filter(time,

new Filter<Time>() {

long startT = System.currentTimeMillis();

public boolean test(Time t) {

return (t.toMillis(true) - startT > 5000);

}

});

Behavior<Double> r = Utilities.until(r0,

filtered, rt);

Behavior<String> rString = Utilities.lift(r,

"toString");

// Set the text.

TextView l = (TextView) findViewById(

R.id.textView1);

Utilities.lift(l, "setText", rString);

// Force an update to the computation.

r0.forceUpdate();

}

public Double computeRadius(Long t) {

return Math.sin(1000 * t) + 5;

}

}

Listing 7: Code for the circle application.

public class CalcActivity extends Activity {

public void compute(String s1, String op,

String s2) {

TextView v = (TextView) findViewById(

R.id.textView1);

try {

float n1 = new Float(s1).floatValue();

float n2 = new Float(s2).floatValue();

float r;

if (op.equals("+"))

r = n1 + n2;

else if (op.equals("-"))

r = n1 - n2;

else if (op.equals("*"))

r = n1 * n2;

else if (op.equals("/"))

r = n1 / n2;

else

throw new IllegalArgumentException();

v.setText((new Float(r)).toString());

}

catch (Exception e) {

v.setText("Undefined");

}

}

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.calc);

// Find "Finish" button and

// create click stream.

Button b =

(Button) findViewById(R.id.button1);

EventStream<View> clicks =

Utilities.clicks(b);

Utilities.trigger(clicks, this, "finish");

// Create the calculator streams.

EditText t1 =

(EditText) findViewById(R.id.editText1);

EventStream<String> s1 = Utilities.text(t1);

Spinner s =

(Spinner) findViewById(R.id.spinner1);

String[] ops = { "+", "-", "*", "/"};

ArrayAdapter<String> adapter =

new ArrayAdapter<String>(this,

android.R.layout.simple_spinner_item, ops);

adapter.setDropDownViewResource(

android.R.layout.simple_spinner_dropdown_item);

s.setAdapter(adapter);

EventStream<String> op = Utilities.selects(s);

EditText t2 = (EditText) findViewById(

R.id.editText2);

EventStream<String> s2 = Utilities.text(t2);

Behavior<String> b1 = Utilities.hold(s1, "");

Behavior<String> b2 = Utilities.hold(

op, ops[0]);

Behavior<String> b3 = Utilities.hold(s2, "");

Utilities.lift(this, "compute", b1, b2, b3);

}

}

Listing 8: Code for the calculator application.

B. APPLICATION CODE WITHOUT FROID

public class CalcActivity extends Activity {

public void compute(EditText t1, Spinner s,

EditText t2) {

String firstArg = t1.getText().toString();

String op = s.getSelectedItem().toString();

String secondArg = t2.getText().toString();

this.compute(firstArg, op, secondArg);

}

public void compute(String s1, String op,

String s2) {

TextView v = (TextView) findViewById(

R.id.textView1);

try {

float n1 = new Float(s1).floatValue();

float n2 = new Float(s2).floatValue();

float r;

if (op.equals("+"))

r = n1 + n2;

else if (op.equals("-"))

r = n1 - n2;

else if (op.equals("*"))

r = n1 * n2;

else if (op.equals("/"))

r = n1 / n2;

else

throw new IllegalArgumentException();

v.setText((new Float(r)).toString());

}

catch (Exception e) {

v.setText("Undefined");

}

}

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.calc);

// Find "Finish" button.

Button b = (Button) findViewById(

R.id.button1);

b.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

CalcActivity.this.finish();

}

});

// Get the first text.

final EditText t1 = (EditText) findViewById(

R.id.editText1);

// Setup the spinner.

final Spinner s = (Spinner) findViewById(

R.id.spinner1);

String[] ops = { "+", "-", "*", "/"};

ArrayAdapter<String> adapter =

new ArrayAdapter<String>(this,

android.R.layout.simple_spinner_item, ops);

adapter.setDropDownViewResource(

android.R.layout.simple_spinner_dropdown_item);

s.setAdapter(adapter);

// Get the second text.

final EditText t2 =

(EditText) findViewById(R.id.editText2);

// Set the text watcher.

TextWatcher watcher = new TextWatcher() {

public void afterTextChanged(Editable t) {

CalcActivity.this.compute(t1, s, t2);

}

public void beforeTextChanged(

CharSequence arg0,

int arg1, int arg2,

int arg3) {

// Do nothing.

}

public void onTextChanged(CharSequence arg0,

int arg1, int arg2, int arg3) {

// Do nothing.

}

};

t1.addTextChangedListener(watcher);

t2.addTextChangedListener(watcher);

// Set the spinner listener.

s.setOnItemSelectedListener(

new OnItemSelectedListener() {

public void onItemSelected(

AdapterView<?> parent, View view,

int pos, long id) {

CalcActivity.this.compute(t1, s, t2);

}

public void onNothingSelected(

AdapterView<?> arg0) {

// Do nothing.

}

});

}

}

Listing 9: Code for the calculator application without Froid.

public class CircleActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.circle);

// Find "Finish" button.

Button b = (Button) findViewById(R.id.button1);

b.setOnClickListener(new OnClickListener() {

public void onClick(View v) {

CircleActivity.this.finish();

}

});

// Create filter.

final Filter<Time> f = new Filter<Time>() {

long startT = System.currentTimeMillis();

public boolean test(Time t) {

return (t.toMillis(true) - startT > 5000);

}

};

// Initial constant radius of 5.

Double rad = new Double(5.0);

// Set the text.

final TextView l = (TextView) findViewById(

R.id.textView1);

l.setText(rad.toString());

// Compute the radius every 500ms.

final Handler h = new Handler();

Runnable r = new Runnable() {

public void run() {

Time t = new Time();

t.set(System.currentTimeMillis());

// Check that the time object

// passes the filter.

if (f.test(t)) {

long ms = t.toMillis(true);

Double rad = CircleActivity.this.

computeRadius(ms);

l.setText(rad.toString());

}

h.postDelayed(this, 500);

}

};

h.post(r);

}

public Double computeRadius(Long t) {

return Math.sin(1000 * t) + 5;

}

}

Listing 10: Code for the circle application without Froid.

