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ABSTRACT 

This paper details the creation of a framework for machine 

transliteration between two scripts. It extends the work done by 

Knight and Graehl on transliteration between English and 

Japanese using weigheted finite-state transducers (WFSTs) to 

represent a generative model for the process. The framework 

outlined in this paper is a modular hub-and-spoke model 

composed of WFSTs that allows transliteration between any two 

languages for which WFSTs are available. The composition of the 

WFSTs and the results of testing with all languages for which data 

was available are given.  

1. INTRODUCTION 
Translation is the transformation of utterances from one language 

to another preserving meaning as best as possible. However, for 

some phrases, such as proper names, technical and cultural terms, 

and concepts without clear analogues in the target language, 

translation isn’t appropriate, because there is no fitting image in 

that language. In such situations, if the languages do not share a 

script, the mapping is replaced with transliteration, under which 

utterances are transformed from one script to another preserving 

pronunciation. 

Transliteration, especially as an automated process, is not as 

straightforward as it may initially seem. Not all sounds are 

represented in all languages, and so the pronunciation of a word in 

one language may not be representable in the script of another. As 

a result, sounds must often be approximated in the target script, 

making transliteration a lossy process: information is destroyed by 

approximation, and a given transliteration does not necessarily 

have a unique original pronunciation. In addition, scripts do not 

encode the same amount of information in each character, so there 

is no one-to-one mapping between the characters of two scripts; in 

fact, there is often not even a constant-to-constant mapping. 

This paper details the creation of a framework for machine 

transliteration between any two languages. This is more specific 

than transliteration between two scripts, because different 

languages can use the same script differently (just look at English 

and Gaelic). This has the obvious application of script-to-script 

transliteration, but it also has the effect of making it possible to 

“transliterate” because two different languages’ uses of the same 

script, such that pronunciation is preserved as best as possible for 

a speaker of only the target language reading the result of the 

transliteration. This means that the framework has another 

application in creating pronunciation guides for loanwords. 

The goal of this project was to make a framework that can be used 

with any two given languages, and so is not designed with any 

particular language pair in mind. This gave rise to a modular, hub-

and-spoke structure, into which languages can be added with no 

change to the rest of the framework. To further the goal of 

generalizability, we wanted to use corpora that were not specific 

to particular languages; the Wikimedia projects lend themselves 

nicely to this purpose, since they have a goal of accumulating 

content in as many languages as possible (see Appendix for 

statistics on language distribution in the corpora). 

2. APPROACH 

2.1 Previous Work 
In their 1998 paper, Knight and Graehl discussed their creation of 

a machine transliteration model between English and Japanese, 

with the specific goal of achieving backtransliteration from 

Japanese to English, i.e., determining the original English phrase 

given its Japanese transliteration [1]. They created a generative 

model for the process comprising the following stages: 

1. Writing of English script 

2. Reading of English pronunciation 

3. Translation to Japanese pronunciation 

4. Transcription to Japanese script 

The original model includes an additional stage for the act of 

writing in Japanese script as distinct from the selection of 

Japanese characters. This is because Knight and Graehl expected 

data in the form of imaged Japanese script, which would then be 

processed using optical character recognition (OCR). To 

appropriately model the failures of OCR, the model had to include 

a step introducing transcription error. Since the project with which 

this paper deals does not include an OCR step, the generative 

model is limited to the four steps given above. 

Each step in the generative model above can be represented as a 

probability distribution, which in turn can be implemented as 

finite-state automata: the first as a weighted finite-state acceptor 

(WFSA) and the rest as weighted finite-state transducers 

(WFSTs). The complete model for English-Japanese 

transliteration is produced by the composition of these automata; 

fortunately, automata can be reversed, so this model can handle 

either direction of transliteration! 

Because the mapping between English and Japanese sounds, 

represented by step 3 in the generative model, is neither one-to-

one nor constant-to-constant, Knight and Graehl used an 

estimation-maximization (EM) algorithm to generate the WFST. 

This process in outlined in their paper. 

2.2 Framework 
Our project’s goal is a generalized framework that can operate 

between any two languages. This lends itself to a modular, hub-

and-spoke structure. Our generative model is very similar to that 

of Knight and Graehl: 

1. Writing of script for language A 

2. Reading of pronunciation from language A 

3. Translation to pronunciation in language B 

4. Transcription to script for language B 

Each of these, again, is modeled as an automaton. In the center of 

the structure is the universal International Phonetic Alphabet 

(IPA) hub. This can be implemented as a trivial WFSA, which 

accepts every string that can be composed of IPA characters; in 

practice, this is equivalent to leaving it out of the composition. 



Each spoke represents a given language. The inner WFST 

transforms the pronunciation of a word under the universal IPA, 

i.e., in an inventory in which all sounds are available, into the 

pronunciation of the word in that language. In reverse, this is just 

an identity mapping (since no sounds need be approximated), so 

the WFST can be left out of the composition. The outer WFST 

transforms a word from its pronunciation in the language to its 

written representation in the appropriate script. 

 

 

Figure 1. The transliteration framework, with an example 

path 

With this framework, the procedure to transliterate a word from 

language La to language Lb is to transcribe it to IPA for La, which 

is equivalent to the universal IPA transcription for that word, 

using the outer WFST on the La spoke, then to transform that IPA 

to IPA for Lb using the inner WFST on the Lb spoke, and finally 

to transcribe the resulting IPA to Lb’s script using the outer WFST 

on the Lb spoke. 

3. MODELS 

3.1 Implementation Note 
Carmel, a simple and powerful finite-state transducer by Jonathan 

Graehl, was used to train and run all automata in this project [1]. 

3.2 Script to IPA 
The corpus for these models is the complete dump of Wiktionary, 

the dictionary of the WikiMedia project1. From this, words with 

IPA pronunciation keys were extracted. To generate the WFST for 

each language, the EM algorithm used by Knight and Graehl was 

employed, using word-pronunciation pairs in place of loanword 

pairs. 

3.3 IPA to IPA 
For the inner WFST for a language, the IPA inventory of the 

language was determined by observing which IPA segments were 

present in the Wiktionary dump. The WFST was built as a single 

final state with transitions for each pairing in which a segment 

from the language’s inventory is consumed and a segment from 

                                                                 

1 Statistics on the corpora used in this project can be found in 

Table A1. 

the universal IPA is produced, as well as transitions in which no 

segment is consumed and transitions in which no segment is 

produced. 

To train these WFSTs, it was necessary to assemble pairs of 

loanword pronunciations. For this, we used the titles of all 

Wikipedia pages in the Cities category, gathering their spellings in 

other languages by following the interlanguage links that 

Wikipedia uses to connect equivalent articles on different-

language editions. Cities were chosen because city names are 

generally adapted into other languages instead of being translated, 

so they are likely to be loanwords, and because they are common 

on Wikipedia and frequently appear in several language editions. 

Once pairs of article titles were obtained, they were run through 

the script-to-IPA WFSTs described above for the appropriate 

languages in order to obtain IPA transcriptions. These paired 

pronunciations were then used to train the IPA-to-IPA WFSTs. 

4. RESULTS 
The training data in this project was randomly separated into three 

sets: 80% training, 10% development, and 10% test. Results of 

transliteration were scored by their Levenshtein distance2 from the 

expected result divided by the number of characters in the 

expected results. The top score among the four most likely 

transliterations (as predicted by the model) was used to score each 

pair. Each language was given two scores: the average score of 

translating words from the language to another and the average 

score of translating words to the language. The results can be seen 

in Table A2. 

5. DISCUSSION 

5.1 Additional functionality from Knight and 

Graehl 
Knight and Graehl included some functionality in their work that 

this project could be expanded to include. One is the use of OCR. 

This project uses digital text as input, but expanding it to be able 

to take input from images would increase its applicability. The 

other is a word likelihood step, which allows the program to make 

a more intelligent choice between possible mappings. However, 

this is only applicable to back-transliteration. It could be included, 

as long as the program can be told when it is performing back-

transliteration, so it is only used for appropriate operations. 

5.2 Future Work 

5.2.1 Less naïve IPA-to-IPA step 
The model for the inner IPA-to-IPA step used in this paper 

assumes a one-to-one correspondence in segments between 

languages, but a more accurate model would allow for multiple 

segments to be replaced with a single segment and vice versa. A 

possible approach is to use the EM algorithm from the script-to-

IPA step again.  

5.2.2 Metric 
The metric we used to evaluate attempted transliterations does a 

good job of accounting for different kinds of errors, but considers 

all substitutions to be equally bad. A more intelligent metric 

would penalize less for the use of phonologically similar 

characters. 

                                                                 

2 The Levenshtein difference between words A and B is the 

minimum number of single-character insertions, deletions, and 

substitutions that must be done to change A into B. 



5.2.3 Corpora 
The Wiktionary dump served as a fantastic corpus for the script-

to-IPA step, but the city corpus was far more limited for the IPA-

to-IPA set, since city names are often not reproduced faithfully in 

other languages. Personal names, which are generally 

approximated as closely as possible in other languages, would be 

better for language pairs that use different scripts, but are not as 

readily available, and would not be informative for language pairs 

that use the same script, since the spelling of names is usually 

preserved within a script. A better corpus should be sought. 

5.2.4 Influence from related languages 
A tweak that would improve performance would be to allow 

languages with little data to be trained with influence from related 

languages which more data. This relies on the assumption that 

related languages are phonologically similar, and would make it 

possible to obtain useful, less-noisy behavior for low-data 

languages. 
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APPENDIX 
Table A1. Corpora statistics 

Language 
# IPA 
entries 

# city 
pairs Language 

# IPA 
entries 

# city 
pairs Language 

# IPA 
entries 

# city 
pairs 

Abaza 7 0 Manx 80 19182 Portuguese 273 612843 

Afrikaans 21 85631 Hebrew 355 200560 Romanian 650 305295 

Old English 1678 20283 Hindi 121 48844 Russian 231 928784 

Arabic 42 22177 Fiji Hindi 78 25241 Sicilian 492 68058 

Aramaic 1175 0 Hiligaynon 16 0 Scots 280 98157 

Egyptian Arabic 12 8135 Croatian 25 94198 Seri 9 0 

Libyan Arabic 42 0 Hungarian 10721 219918 Old Irish 11 0 

Bulgarian 4224 264516 Interlingua 8 5056 Shan 1 0 

Bengali 29 3010 Icelandic 2064 82989 Slovene 227 112538 

Breton 192 110352 Italian 714 829918 Albanian 397 77094 

Catalan 38 370511 Japanese 242 0 Serbian 74 102653 

Mandarin 
Chinese 32 0 Lojban 1347 6139 

Saterland 
Frisian 11 3046 

Corsican 14 2805 Georgian 40 111678 Swedish 306 367662 

Czech 264 317105 
Guugu 
Yimithirr 15 0 Swahili 36 87452 

Kashubian 13 3837 Gamilaraay 39 0 Syriac 21 0 

Welsh 106 84192 Khmer 41 0 Tamil 11 3135 

Danish 2097 257061 Korean 334 0 Tajik 94 121382 

German 3722 641700 Latin 3037 159114 Thai 617 93600 

Ewe 73 8586 Lombard 23 56219 Tagalog 117 140126 

Modern Greek 137 140998 Lao 435 1563 Tswana 82 1694 

English 19605 1069887 Lithuanian 23 167422 Tok Pisin 9 1021 

Esperanto 5330 448554 Luo 13 0 Turkish 44 252631 

Spanish 819 775527 Macedonian 489 114841 Taos 163 0 

Estonian 10 19773 Mandinka 17 0 Uyghur 55 21571 

Basque 20 251171 Malay 7 1144 Ukrainian 10 45917 

Persian 574 376639 Maltese 246 14481 Urdu 50 34192 

Finnish 2126 371826 Nahuatl 92 9927 Vietnamese 41 280984 

Filipino 113 0 Min Nan 13 0 Martuthunira 26 0 

Faroese 27 19449 
Classical 
Nahuatl 219 0 

Classical 
Armenian 107 0 

French 11837 831045 Dutch 1288 629478 Yiddish 37 47141 

Old French 29 0 Norwegian 143 307836 Yucatec Maya 34 0 

West Frisian 125 55386 Occitan 24 75552 Yue Chinese 177 0 

Irish Gaelic 111 46095 Polish 1390 578964 

Scottish Gaelic 109 40086 Old Prussian 36 0 

Swiss German 20 0 Pashto 241 8473 

 

  



Table A2. Transliteration scores3 

Language To From Language To From 

Afrikaans 0.364874 0.701885 Georgian  0.849916 

Old English 0.414463 0.659817 Latin 0.26677 0.820853 

Arabic 
 

0.65424 Lombard 0.25641 0.722312 

Egyptian Arabic 
 

0.547718 Lao 0.018182 0.60396 

Bulgarian 0.163947 0.681601 Lithuanian 0.240931 0.862137 

Bengali 
 

0.4 Macedonian 0.038418 0.727504 

Breton 0.467857 0.617725 Malay  0.413793 

Catalan 0.421215 0.609492 Maltese 0.367213 0.639773 

Corsican 0.833333 0.388601 Nahuatl 0.311301 0.570064 

Czech 0.458534 0.745898 Dutch 0.475014 0.629512 

Kashubian 
 

0.527523 Norwegian 0.459506 0.634823 

Welsh 0.497754 0.720327 Occitan 0.346026 0.646238 

Danish 0.426706 0.659233 Polish 0.480445 0.714986 

German 0.458967 0.537164 Pashto  0.616327 

Ewe 0.390342 0.648352 Portuguese 0.503216 0.603653 

Modern Greek 0.092752 0.763835 Romanian 0.454886 0.684343 

English 0.186509 0.579267 Russian 0.056528 0.767493 

Esperanto 0.494643 0.752227 Sicilian 0.446411 0.696462 

Spanish 0.488086 0.715101 Scots 0.457447 0.711025 

Estonian 0.142857 0.6489 Slovene 0.374927 0.757197 

Basque 0.196721 0.653504 Albanian 0.472436 0.740868 

Persian 0.221469 0.671058 Serbian 0.028369 0.713299 

Finnish 0.463465 0.674484 Saterland Frisian 0.580645 0.369565 

Faroese 0.278302 0.64898 Swedish 0.426888 0.638648 

French 0.393805 0.505779 Swahili 0.180579 0.722561 

West Frisian 0.408188 0.631654 Tamil 0.020833 1.175676 

Irish Gaelic 0.41742 0.670078 Tajik 0.027273 0.678282 

Scottish Gaelic 0.349518 0.560106 Thai 0.022669 0.745732 

Manx 0.322796 0.652901 Tagalog 0.374446 0.726637 

Hebrew 0.103395 0.624463 Tswana  0.45045 

Hindi 0.089188 0.671261 Tok Pisin  0.285714 

Fiji Hindi 0.427873 0.713891 Turkish 0.340317 0.714013 

Croatian 0.333333 0.756377 Uyghur 0.012346 0.6916 

Hungarian 0.49795 0.557865 Ukrainian  0.662248 

Interlingua 
 

0.698745 Urdu 0.146727 0.597581 

Icelandic 0.496498 0.749766 Vietnamese 0.372308 0.646612 

Italian 0.440775 0.642445 Yiddish 0.076321 0.738375 

 

                                                                 

3 Gaps indicate a lack of available data for testing. 


