
CrosScan: The Crossword Scanning App

Ryan Dorson
∗

Department of Computer
Science

University of Maryland
College Park, MD 20742

rdorson@terpmail.umd.edu

Evan Golub
Department of Computer

Science
University of Maryland

College Park, MD 20742
egolub@cs.umd.edu

David Jacobs
Department of Computer

Science
University of Maryland

College Park, MD 20742
djacobs@cs.umd.edu

ABSTRACT
CrosScan: The Crossword Scanning App is an Android ap-
plication that allows users to scan crossword puzzles into
their mobile devices using the camera so they can com-
plete the puzzles digitally. There are two aspects of this
project: scanning puzzles from newspapers, magazines, and
other physical media, and solving the scanned puzzles inter-
actively in the application. Usability testing will allow me to
base the design of the project on the preferences of the tar-
get audience, crossword enthusiasts. By asking participants
to complete a few tasks with the application, I hope to learn
what end users expect from a crossword scanning applica-
tion, which features are necessary for the application, and
how to improve those features. In this study with no known
risks, human subjects will be protected by minimizing loss
of confidentiality by storing data on a password-protected
computer and assuring they are informed of their rights to
withdraw from the study at any time.

1. INTRODUCTION
It is becoming more common to see people using mobile
technology, rather than pen and paper, to take notes [8].
Whereas conventional note taking requires pens and pencils,
which are often inconvenient to locate, mobile technology
makes note-taking convenient and accessible, requiring only
a readily available finger. In many similar cases, mobile
applications are reinventing tangible technologies. However,
with the reinvention of tangible technologies on the digital
platform, it becomes difficult to bridge the gap between the
physical and the digital.

The e-book market, for example, makes it convenient for
users to access millions of titles on their mobile devices, but
for a price [11]. If the users already own a collection of
physical books, then it is unlikely that they will want to
buy digital copies of the same collection. Hence, they must
deal with the inconvenience of carrying the physical books

∗CS Honors Undergraduate Student

with them, despite having an e-book reader. A system for
bringing the physical books into digital media would help
users to avoid such a problem.

With the recent proliferation of Quick Response (QR) codes,
industry has found a solution for bridging the gap between
tangible and digital technologies. QR codes are notable for
their ability to store large amounts of information in com-
parison to traditional UPC barcodes, as well as their acces-
sibility to mobile device users [6]. With QR codes affixed
to many physical objects (e.g., for advertising and public-
ity reasons) anyone with a mobile device can bridge the gap
between the physical and the digital, by scanning the code.

Crossword puzzle solvers find themselves in a similar predica-
ment as e-book market consumers. If they have a physical
crossword puzzle they want to solve (e.g. from a newspa-
per or magazine), there is no way to bring the puzzle into
digital media. Thus, they must carry around the physical
puzzle and pen despite having the capability to store and
solve crossword puzzles on mobile devices. CrosScan: The
Crossword Scanning App solves this problem by allowing
crossword puzzle solvers to scan puzzles from physical me-
dia and complete them on their mobile devices.

CrosScan is an Android application that allows users to scan
crossword puzzles into their mobile devices using the cam-
era so they can complete the puzzles digitally. There are
two aspects of this project: scanning puzzles from news-
papers, magazines, and other physical media, and solving
the scanned puzzles interactively in the application. Thus,
once users take a picture of a crossword puzzle, CrosScan
reproduces the grid and allows users to enter the answers to
the clues. CrosScan seeks to answer the question of how to
scan a crossword puzzle from physical media into a digital
medium. The current study also seeks to answer the ques-
tion of what potential CrosScan users would want from such
an application.

2. REVIEW OF RELATED WORKS
Crosswords [2] is a crossword puzzle application that allows
users to download crossword puzzles into the app from var-
ious sources and complete them digitally. This application
partially solves the problem by bringing puzzles users can
complete physically onto the digital platform. However, the
method is indirect — users can only access the puzzles once
publishers release them to the Crosswords app. In addition,
users can only access a limited database of digitized cross-

word puzzles, rendering them unable to complete puzzles
digitally from a large number of other sources.

Sudoku Grab [4] is a Sudoku puzzle scanning application
created by Dr. Chris Greening. It is similar in design to
CrosScan in that it is capable of scanning Sudoku puzzles
from physical media so that users can complete them digi-
tally. It differs in that the scanner must recognize a 9x9 grid
of numbers, whereas CrosScan must recognize a grid (black
and white squares) of variable size and a list of clues. How-
ever, many of the image recognition methods implemented
in the Sudoku Grab app are similar to those used in CrosS-
can.

3. COMPUTER VISION APPROACH
Several computer vision techniques lend themselves to the
successful recognition of the crossword puzzle grid. In this
paper, I use the OpenCV4Android implementations of these
techniques, described below.

The first technique involves retrieving the photo (see Fig-
ure 1) and converting it to a grayscale image (see Figure
2). This step simplifies the processing of the image, since
color information is not necessary for successful recognition
of the crossword puzzle. In a grayscale image [10], pixel in-
formation is represented on a single channel, with each pixel
ranging in intensity from 0 (black) to 255 (white).

Figure 1: The original image.

The next technique, adaptive thresholding [9], detects edges
in the grayscale image (i.e., edges of the crossword puzzle
grid). In general, thresholding refers to producing a bi-
nary image of black and white pixels from a corresponding
grayscale image based on a threshold. It involves choosing
a threshold value between 0 and 255 and labeling each pixel
in the binary image black or white based on whether the
intensity of the corresponding pixel in the grayscale image
is higher or lower than that value. However, this general
technique does not detect edges well or take into account

Figure 2: The grayscale image after conversion.

shadows and other anomalies in the image. Thus, in adap-
tive thresholding, the algorithm chooses a threshold for each
pixel in the image based on its surrounding pixels. This
threshold value often corresponds to the average intensity
of surrounding pixels. Thus, it is possible to detect edges
in the image, since the dark pixels have a lower intensity
than surrounding light pixels. In the current case, adaptive
thresholding produces a binary image where white pixels
correspond to low intensity pixels in the grayscale image
and black pixels correspond to high intensity pixels in the
grayscale image (see Figure 3).

Figure 3: The binary image after adaptive thresh-
olding.

Blob extraction, also known as connected-component label-
ing [5], allows for the detection and extraction of a list of
“blobs” from the image. In the case of CrosScan, the blobs
are regions of white pixels in the binary image. By taking
this list of blobs and sorting it by blob area, the algorithm
can extract the largest blob from the image. Given that the
focus of the image is the puzzle grid, this method will ex-
tract the blob consisting of grid lines. Hence, it finds the
region of the image containing all grid data (see Figure 4).

Figure 4: The edge image cropped to the region with
the largest blob.

The next technique, the Hough line transform, works on
the binary image limited to the portion discovered via blob
extraction. The algorithm finds lines in the image by group-
ing detected edges in the image [3]. Using a voting proce-
dure, it determines which lines are the most accurate can-
didates, throwing away lines with small numbers of votes.
The Hough line transform finds the lines of the crossword
grid well, but it also introduces many extraneous lines due to
noise (see Figure 5). Thus, an algorithm for grid extraction
from detected lines is necessary.

Figure 5: The line image with extraneous lines.

4. GRID EXTRACTION
The problem of grid extraction essentially comes down to
finding the largest sets of approximately equally spaced hor-

izontal and vertical lines in the image. Finding a set of
equally spaced lines in the image allows the algorithm to
discover the boundaries of the squares. Finding the largest
set of equally spaced lines ensures that the algorithm dis-
covers the whole puzzle.

The algorithm begins with finding the orientation of the
grid by counting the frequency of each line angle. The most
frequent angle becomes the horizontal line angle, and the
vertical line angle is 90 degrees from this angle. The algo-
rithm will swap the angles if one is closer to horizontal than
the other angle.

Next, the algorithm adds all lines with angles close to the
horizontal angle to a horizontal list and those with angles
close to the vertical angle to a vertical list. The algorithm
sorts the lines in the list based on the average vertical and
horizontal positions, respectively, of the lines. By sorting, it
is possible to find the largest set of horizontal and vertical
lines in O(n3) steps, where n is the number of lines in the
set.

The algorithm iterates through every pair of lines in O(n2)
steps. For each pair of lines, it calculates the distance d be-
tween them and adds them to a set. If d is greater than a
minimum square size threshold, then the algorithm iterates
through successive lines, looking for ones that are distance
d from each other (or within a small threshold of this dis-
tance). It adds each line that satisfies this property to the
set in O(n) steps. If the resulting set is larger than the
current largest set, then it keeps the set. The result of the
algorithm is the largest set of equally spaced lines in the
image (see Figure 6).

Figure 6: The resulting largest set of horizontal and
vertical lines.

The next task involves recognizing where the squares are
from the line data. The algorithm computes the intersection
of each pair of horizontal and vertical lines (or projected
intersection if the segments do not intersect). The algorithm
normalizes these points so they are within the boundaries of
the puzzle grid and considers the points to be the corners of
the squares (see Figure 7).

The next task is to recognize whether the squares are black

Figure 7: The blue checkerboard pattern designates
detected squares.

or white. The algorithm finds the average intensity of each
of square (by adding up pixel values in each square and
dividing by the number of pixels). It builds an image where
each pixel corresponds to each square and has a value equal
to the average intensity for that square (see Figure 8).

Figure 8: The pixel image based on average inten-
sity.

It then applies adaptive thresholding to the image to pro-
duce a binary image where black pixels correspond to black
squares and white pixels correspond to white squares (see
Figure 9). Using this image, it assigns black or white to
corresponding squares in the crossword grid. Finally, the
algorithm serializes the grid data, containing grid size and
locations of black and white squares, so CrosScan can read
and display the puzzle.

5. RESULTS
In order to measure the performance of the grid extraction
algorithm, I analyzed a sample of 50 crossword puzzle im-
ages. Using the app, I scanned the 50 images from 10 differ-
ent crossword puzzles in 5 different lighting and orientation
environments. I measured the ability of the app to extract
all the squares from the image on the first try, recording

Figure 9: The binary pixel image after adaptive
thresholding.

precision and recall to calculate the F-score.

The crossword puzzles came from a variety of sources, as
detailed in Table 1.

The environments consisted in different lighting sources and
orientations, as shown in Table 2.

Precision measures how many squares the algorithm de-
tected correctly out of all the squares it detected. If the al-
gorithm detects a non-existent square from outside the grid,
then the precision will be less than 1. Recall measures how
many squares the algorithm detected correctly out of all the
squares it should have detected. If the algorithm does not
detect all of the cells in the grid, then the recall will be less
than 1.

Precision = |correctly detected squares|
|correctly detected squares|+|incorrect squares added|

Recall = |correctly detected squares|
|correctly detected squares|+|correct squaresmissed|

I used these values to calculate the F-score, F, which factors
in both precision and recall. Then I went through the de-
tected squares and found the percentage of square correctly
labeled black or white. I multiplied this value by the F-score
to generate a scaled F-score, SF, which factors in the preci-
sion and recall of square detection along with the percentage
of correctly labeled squares.

F = 2×Precision×Recall
Precision+Recall

SF = |correctly labeled squares|
|squares in grid| × F

The algorithm performed fairly well, with an average F-score
of 0.9530 across all puzzles and environments (see Table 3).
Except for 2 cases, when the algorithm did not turn out an

Puzzle Size Format Notes
crossword-1 15x15 Newpaper None
crossword-2 15x15 Newpaper None
crossword-3 21x21 Online print-out None
crossword-4 15x15 Online print-out None
crossword-5 15x15 Newpaper Partially completed, eraser marks
crossword-6 15x15 Online print-out None
crossword-7 15x15 Online print-out British crossword puzzle
crossword-8 15x15 Online print-out Landscape photo
crossword-9 15x15 Online print-out Smudgy
crossword-10 15x15 Computer screen None

Table 1: Puzzle details.

Environment Description
Environment 1 Daytime inside, closed blinds
Environment 2 Daytime inside, open blinds
Environment 3 Daytime outside
Environment 4 Nighttime inside
Environment 5 Same as Environment 1, but rotated 10 degrees counter-clockwise

Table 2: Environment details.

Crossword
1 2 3 4 5 6 7 8 9 10 Average

Environment
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 0.8824 1.0000 1.0000 0.8333 1.0000 1.0000 1.0000 1.0000 1.0000 0.9716
3 1.0000 0.9375 0.8400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8889 0.9666
4 0.9822 1.0000 1.0000 1.0000 0.9677 1.0000 1.0000 1.0000 1.0000 1.0000 0.9950
5 0.8065 1.0000 0.0000 0.9677 0.9269 1.0000 0.8824 0.8333 0.9653 0.9375 0.8320

Average 0.9577 0.9640 0.7680 0.9935 0.9456 1.0000 0.9765 0.9667 0.9931 0.9653 0.9530

Table 3: Scaled F-score results.

F-score of 1 for a given puzzle and environment, rescanning
a second or third time resulted in an F-score of 1.

The first exception to this rule was crossword-10 in Envi-
ronment 3, since the computer screen was too dim outside
to recognize the color of the squares. However, it did detect
the correct number of squares. The second exception was
crossword-3 in Environment 5, since the puzzle was large
and rotating it caused the size of the squares to be small.
The algorithm failed by judging the width of a cell to be the
width of two actual cells. Thus, the algorithm consolidated
2 squares into 1 several times.

Other than these issues, there were 3 main problems with
recognition. The first was rotating the puzzle (as can be
seeing in the Environment 5 results in Figure 10), causing
the algorithm not to detect squares in the puzzle. The sec-
ond was not detecting all the squares in the image (resulting
in a lower recall) due to a variety of reasons. The last was
shadows over the puzzles, causing the algorithm to mislabel
the color of squares.

6. PROCESS
I created the Android application in various iterations. The
first step involved a low-fidelity prototype of the application,
created using mockups of Android device screens, called “ac-
tivities.” The prototype allowed me to design each of the
necessary activities and determine the layout of the appli-
cation. Next, I created a “shell” of the application without

most of the current functionalities. This shell allowed me to
program placeholder activities and the transitions between
them. It also allowed me to work with Android built-in de-
vices, such as the camera and input method (keyboard).

Next, I investigated model applications, such as Crosswords
and Sudoku Grab. The open source Sudoku puzzle app,
OpenSudoku [7], served as a starting point for my appli-
cation. OpenSudoku contained interactive grid activities,
puzzle lists, and keyboard input methods, all of which were
vital to my application. By tweaking these implementations,
I was able to implement the storage and completion of cross-
word puzzles.

CrosScan stores serialized puzzles in a SQLite database, al-
lowing it to read and modify existing puzzles and create new
ones. The app displays the puzzles in an activity that draws
the grid of black and white squares, includes a clue bar, and
contains a keyboard for user input.

After completing the puzzle completion aspect of the app,
I began to implement the computer vision component. My
initial methods were similar to the ones described above,
but with a few key differences that rendered the process less
accurate. The original implementation used the Canny edge
detector rather than adaptive thresholding, and it did not
include a blob detection stage.

Whereas the adaptive thresholding technique detects the

Environment 1 Environment 2 Environment 3 Environment 4 Environment 5
0

0.2

0.4

0.6

0.8

1

Environment

S
ca

le
d

F
-s

co
re

crossword-1

crossword-2

crossword-3

crossword-4

crossword-5

crossword-6

crossword-7

crossword-8

crossword-9

crossword-10

Figure 10: Scaled F-score by Environment.

whole edge of the puzzle, the Canny edge detector only found
the boundaries of each edge. Because of the high resolution
of the Android camera, each line on the crossword puzzle
page would be multiple pixels wide. The Canny edge de-
tector would detect the outer boundaries of each of these
lines, causing the Hough line transform to detect lines on
each boundary. This caused more noise than running the
Hough line transform with the binary image from adaptive
thresholding.

Without blob detection, the app struggled to locate the grid
in the photo. Though the algorithm usually noticed a few
of the grid squares, it rarely found all of them. This issue
resulted in incomplete grids, as well as rows of completely
white squares found outside of the puzzle grid due to noise
(see Figure 11). By focusing on the portion of image con-
taining the grid via blob extraction, the algorithm began de-
tecting the grid more reliably and processing time improved.

7. CURRENT VERSION
The current version of CrosScan has most of the intended
features implemented. Since the app has two main functions,
the main activity consists of two buttons, allowing users to
navigate easily between the two (see Figure 12). When the
user selects the “Scan Puzzles” option, it navigates to a cam-
era activity with a button for taking pictures. In addition,
tapping the screen causes the camera to autofocus.

When the user takes a photo, it performs the image process-
ing. The app does not yet recognize clues, so it generates
default clues, such as “1a. ACROSS CLUE HERE,” and
“1d. DOWN CLUE HERE” (users can obtain clues from
the photo when solving puzzles). Once processing is com-
plete, it will direct the user to the puzzle naming activity,
where the user can view the scanned puzzle grid and name
the puzzle (see Figure 13). If any grid square has the wrong
color, the user can tap the square to toggle the color between
black and white. If the grid is the incorrect size, it prompts

Figure 11: An incomplete grid with squares detected
outside of grid boundaries, due to lack of blob de-
tection.

the user to use the back button to return to the scanning
screen.

Once the user names the puzzle, it opens the puzzle solving
activity for the user to interact with the puzzle. It also adds
the puzzle to the list of scanned puzzles, which the user
can view in the puzzle list activity. This activity contains
all puzzles that users have scanned and named (see Figure
14). By tapping the puzzle in the list, the user opens the
puzzle in the solving activity. By long-pressing the puzzle,
the user opens a menu with “Play Puzzle,” “Puzzle Info,”

Figure 12: The main activity of the app.

and “Delete Puzzle” options. The first and third options are
self-explanatory. The third option opens an activity that
contains puzzle information, such as title, date of puzzle
creation, and percentage completion (see Figure 15).

The puzzle solving activity uses the Crosswords app as a
model, containing a timer, puzzle grid, clue bar, and key-
board. The activity highlights the cell selected by the user
in yellow, and its corresponding Across or Down entry in
blue (see Figure 16). It also allows the user to navigate
between clues by tapping squares in the grid and to tog-
gle between Across and Down by tapping the selected cell
again or tapping the clue bar. The activity also skips over
squares already occupied by letters and moves to the next
clue once the user completes the current one. The arrows in
the clue bar also allow the user to navigate between clues in
the puzzle.

Users may view the original photo of the crossword puzzle
by selecting the camera icon in the keyboard. This feature
allows users to view the crossword clues, since the app does
not yet extract clues from the image. Doing so opens an
image activity that allows users to zoom and pan the image.
Users may read the clues from the original photo and return
to the solving activity to fill in the answer. Finally, users
may delete the puzzle or restart the puzzle from the solv-
ing activity menu. Restarting the puzzle clears the squares,
returns the cursor the clue, and restarts the timer.

8. USER TESTING

Figure 13: The puzzle naming activity.

User testing will allow me to base the design of the project
on the preferences of the target audience, crossword enthu-
siasts. By asking participants to complete a few tasks with
the application, I hope to learn what end users expect from
a crossword scanning application, which features are neces-
sary for the application, and how to improve those features.

The study will take place on the UMCP Campus in the HCI
user testing room in Hornbake. I will first give participants a
summary of CrosScan, “CrosScan allows users to scan cross-
word puzzles into their mobile devices using the camera so
they can complete the puzzles digitally. There are two main
functions of the app, scanning a puzzle by taking a photo,
and completing the puzzle with the device keyboard. CrosS-
can also allows users to edit puzzles in case they do not scan
correctly.” Then, I will provide an Android device with the
CrosScan app and two paper crossword puzzles (labeled #1
and #2) to participants.

As the first task, I will ask participants to use the app to
scan in puzzle #1, correct the puzzle if necessary, name the
puzzle, and save it. When the user takes the photo, the
phone will wait for processing, and then generate the correct
crossword puzzle, pre-programmed into the phone. Thus,
the app will generate the puzzle in a controlled manner to
simulate intended app use.

For the second task, I will ask participants to begin com-
pleting puzzle #1 by navigating to the puzzle and entering
a given answer to a given clue (e.g., “The answer to 59 Down

Figure 14: The puzzle list activity.

is ‘SPOTS’. Please fill in the answer.”

For the third task, I will ask participants to reset the puzzle
to clear it, and then delete the puzzle so that it no longer
appears in the list of scanned puzzles.

For the fourth task, I will ask participants to use the app
to scan in puzzle #2, correct the puzzle if necessary, name
the puzzle, and save it. When the user takes the photo,
the phone will wait for processing, and then generate the
incorrect crossword puzzle, pre-programmed into the phone,
which I expect participants to correct. The app will generate
the errors in a controlled manner for easy observation of
steps taken to correct the puzzle grid.

Finally, I will ask participants to complete a survey in order
to gauge their thoughts about CrosScan. After they finish,
I will inform them that the app contains pre-programmed
puzzles, which they did not actually scan in real time during
the experiment, but the behavior should be similar in a final
released version.

I will observe and store participant actions, remarks, and
survey responses on a password-protected computer. I will
not record participants via audio or video and the overall
procedure will take no more than 30 minutes.

9. COPYRIGHT CONCERNS
Since many crossword puzzle authors copyright their puz-
zles, the reproduction of these puzzles in my application

Figure 15: The puzzle info activity.

comes into question. In itself, my app does not violate copy-
right law, as it does not contain or distribute copyrighted
puzzles. In addition, there are no provisions in the app that
facilitate violation of the Fair Use Doctrine [1].

In order to determine whether the use of copyrighted mate-
rial is a case of fair use, there are four considerations. The
first consideration is “the purpose and character of the use,
including whether such use is of a commercial nature or is
for nonprofit educational purposes.“ Since the app will not
be sold, there is no commercial nature to CrosScan. In ad-
dition, I will use crossword puzzles in my app for nonprofit
educational purposes during my research. Also, there are no
provisions for using the app to distribute crossword puzzles
that users have scanned, restricting such puzzles to personal
use.

The fourth consideration is “the effect of the use upon the
potential market for or value of the copyrighted work.“ Since
users of the app must first obtain a copy of the puzzle in
order to use the app, the market for the copyrighted work
is not affected by use of the app. Therefore, the hard copy
of the puzzle does not lose its value, as a user must obtain
it for the app to be useful.

10. FUTURE WORK
The main goal for the future of CrosScan is to implement op-
tical character recognition (OCR) of the clues in a scanned
puzzle. By performing OCR in conjunction with grid recog-
nition, it will be possible to pair the two together so the user

Figure 16: The puzzle solving activity.

can browse clues and navigate the grid more easily. Having
clues readily available improves the efficiency of solving the
puzzle by allowing the user to avoid navigating to the image
activity to view the original image and read each clue.

I also plan to continue improvement of the grid extraction
algorithm. Since rotation poses a problem to the algorithm,
I can improve the algorithm to transform the image based
on the most common line angle so that puzzle is upright in
the image.

Some additions to the user interface will also improve usabil-
ity. During image processing, the app will ideally present a
processing dialog with a cancel button for the user’s conve-
nience. Ideally, there will be two buttons at the bottom of
the activity, one labeled “Edit Puzzle,” and the other, “Res-
can Puzzle.” The Edit Puzzle button will lead to a puzzle
editing activity that the user will be able to access anytime
in the application. The Rescan Puzzle button will return
the user to the scanning activity for easy access. In the
puzzle editing activity, there will be options to toggle grid
squares as already implemented. There will also be options
for adding and removing rows and columns and for adding,
removing, and modifying clues.

11. CONCLUSIONS
Considering the results of the grid extraction algorithm,
CrosScan successfully extracts the grid with an average suc-
cess rating of 95.30% given by the scaled F-score. How-
ever, there are certain cases, particularly involving rotation,

where the grid extraction algorithm fails. In addition, user
testing will allow me to target features users expect from
CrosScan in order to improve the app.

12. REFERENCES
[1] Copyright Office (US). The Copyright Law of the

United States and Related Laws Contained in Title 17
of the United States Code. U.S. Government Printing
Office, 2012.

[2] Crosswords for android, June 2014.

[3] R. O. Duda and P. E. Hart. Use of the hough
transformation to detect lines and curves in pictures.
Commun. ACM, 15(1):11–15, Jan. 1972.

[4] C. Greening. iphone sudoku grab: How does it all
work?, July 2009.

[5] L. He, Y. Chao, K. Suzuki, and K. Wu. Fast
connected-component labeling. Pattern Recognition,
42(9):1977 – 1987, 2009.

[6] T.-W. Kan, C.-H. Teng, and M. Y. Chen. Qr code
based augmented reality applications. In B. Furht,
editor, Handbook of Augmented Reality, pages
339–354. Springer, 2011.

[7] R. Mašek. opensudoku-android, Mar. 2011.

[8] A. Schepman, P. Rodway, C. Beattie, and J. Lambert.
An observational study of undergraduate students’
adoption of (mobile) note-taking software. Computers
in Human Behavior, 28(2):308 – 317, 2012.

[9] L. Shapiro and G. Stockman. Computer Vision.
Prentice-Hall, Upper Saddle River, NJ, 2001.

[10] C. Ungureanu, A. Tigora, I. Bucur, and M. Zaharescu.
Reversible color to grayscale conversion. Romanian
Economic Business Review, 8(1):105–113, May 2014.

[11] R. Wischenbart. The Global eBook Market: Current
Conditions & Future Projections. O’Reilly Media,
2013.

