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Abstract
K-mer count analysis has seen little application in metagenomics and we seek to utilize its simplicity 
for contig abundance estimation. Counting k-mers provide a foundation for a broad class of analyses 
and are especially desirable in metagenomics because of the large number of genomes and samples 
involved. Our results show that despite their simplicity, k-mers retain a trove of information which can 
be utilized in a interesting applications with the additional benefit of being much faster than existing 
methods for contig abundance estimation.

Background
Metagenomics studies DNA sequences obtained from samples which contain a heterogeneous mixture 
of genomes. A popular area of interest in metagenomics is in the human gut microbiome, where 
complex communities of bacteria interact with human biology. By studying these communities, we can 
further our understanding of human health and disease. The diverse mixture of genomes increases the 
difficulty in applying existing methods, like genome assembly, as well as introducing a need for new 
analyses like abundance estimation. We would like to estimate the relative abundance at which a 
particular contig – a sequence of DNA such as a gene or a partially assembled piece of a genome for 
example – is present in a sample. This information can be used to study the community population 
structure if the contig is from a known genome. Also, contig abundance estimates can be used in 
downstream analysis to aid in the process of de novo assembly.

Currently, contig abundance estimates are obtained by mapping each read in a sample to a set of 
contigs of interest. Abundance estimates are then obtained by a measure over the number of reads 
mapped to each contig. Read mapping is a complex process with many parameters which can affect the
estimates. Furthermore, ambiguous read mappings are typically decided with a random choice. A final 
issue with read mapping is that it is computationally expensive and requires the creation of a new index
for each set of contigs to be examined. Many metagenomic studies produce hundreds of samples and 
we seek a method which can perform these estimates quickly. Also, if each sample produces a set of 
contigs, we would like to have a method which allows us to be flexible in choosing which combination 
of contigs to use. Generating indices for each set of contigs is possible, but not ideal.

Introduction
A k-mer is a substring of length k and there are exactly l – k + 1 k-mers in a string of length l. The first 



step in k-mer count analysis is to count the frequency with which each k-mer appears in a given set of 
reads. This yields a database, call it D, which maps k-mers to counts. Then, given a particular contig, 
we can iterate over its component k-mers and obtain a list of counts by looking each one up in D.

Constructing a database of k-mers for a single sample is a mature task in software engineering and 
there are tools which do so – some of which trade memory usage for disk space and vice versa. In 
general though, counting k-mers for a single sample is very fast. We defer giving exact measurements 
comparing read-mapping to k-mer counting because read-mapping is dependent on the set of 
references, whereas k-mer counting is not.

K-mer count analysis has only two parameters at the basic level: the length of the k-mer, k, and whether
the orientation of the DNA strand is known. k is typically chosen to be at least 20 and commonly ranges
from 20 – 31. Choosing k too small will yield non-specific count information because the likelihood of 
a k-mer being unique to a genome shrinks as k decreases. However, as k increases, so does the 
likelihood of a k-mer containing an error. In addition, the performance benefits in time and space usage
are only present for some reasonable choice of k. The second parameter determines whether a k-mer 
and its reverse complement are considered to be the same k-mer or not. If the strandedness of the 
sample is not known, we collapse the 4k possible k-mers into 22k – 1.

Motivation
Analyzing k-mer counts alone discards locality information contained in each read. However dire that 
seems, the goal of this approach is to explore how much information we can retain by counting the 
frequency of k-mers and obtain new methods for estimating contig abundance which are much faster.

Speed and storage
The explosion in sequence data is a joy for biologists and a challenge for computer scientists. 
Exponential growth in sequence data cannot be feasibly matched by an exponential growth in 
computational resources. While there is research in efficiently compressing sequence data due to its 
inherent redundancy, analysis on this compressed data remains equivalent to analysis on the raw 
sequence data – so this addresses storage costs but not time to analyze. Storing the database of k-mer 
counts for a sample provides an alternative lossy compression scheme which allows for analysis over 
the compressed data directly.

Once k-mers are counted for a sample, its database can be reused in analyzing new contigs as needed. 
Compared to read-mapping, which requires re-indexing the set of contigs and going through every read
again, k-mer counting can provide a huge speedup to repeated analysis with new contigs.

Current methods are sensitive to the reference
There has been active research in applying k-mer count analysis to RNA-seq data for computing 
transcript abundance. While it may be alluring to use these tools in a new context, like metagenomics, 
it is not clear whether these tools are suitable for a new domain. Recently, a tool which was originally 



created for transcript quantification in RNA-seq data, Kallisto, has been applied to metagenomic 
samples with reported success. However, by removing a small subset of the references and re-running 
the tools on the same sample, we observe a very high variance as shown below.

Introducing a dependence on the set of contigs used is undesirable in a metagenomic context. We 
suspect this is less of an issue in RNA-seq experiments because there is more knowledge in what is 
contained in the sample. But in many metagenomic applications, we have little prior knowledge and 
want to avoid being penalized for this. While it may be argued this is becoming less of a problem with 
the growing number of reference genomes, there will always be a need for exploratory methods.

Simulated Community
In order to test our novel methods, we have created three simulated metagenomic communities of 
increasing complexity. Each sample contains bacterial genomes at 20-fold copy variation and paired-
end reads were simulated at 2X coverage. 

A Naive Approach
One of the simplest approaches for estimating the abundance of a contig in isolation is to take the mean
of it's corresponding k-mer counts in the sample. However, when these estimates are compared to the 

Figure 1: We take the variance of the TPM reported for each contig across 10 samples and plot the 
distribution of variance. (log-log scale)



known copy number of the genome from which they originate, we can see accuracy degrade as 
complexity increases.

Blame
As the complexity of the samples increase, the number of k-mers which are shared by genomes 
increases, as seen in Figure 3. This causes our simple method to incorrectly assign the full count of 
each k-mer. We refer to this concept as blame, because each contig is only responsible for some portion
of the observed counts, not all of them. In order to correct for this, previous methods like Sailfish have 
done an iterative procedure to distribute counts with proportion to the current abundance estimate. 
However, since a goal of this work is to explore methods which do not depend on the set of contigs in 
question, we have explored other options. The approaches we explored seek some transformation of a 
contig's observed count distribution to compensate for shared counts.

Figure 2: Reference-free contig abundance estimation using the mean of k-mer counts.



Transforming The Count Distribution
In Figure 4, we observe that contigs which are among the highest 1% of estimated abundance – and 
thus incorrectly quantified – have multiple peaks at very high counts. If we eliminate counts above a 
certain threshold, we will still incorrectly classify those which lack a defined peak at some other count. 
A promising modification on our previous method is to take the mean of the log counts because this 
lessens the impact of high counts, while still allowing them to contribute to the estimation. These 
results can be seen in Figure 5.

Figure 3: K-mer count distribution for each set of full reference 
genomes. (log scale)



Figure 5: Count distribution for contigs in the 99th 
percentile of abundance estimation. (log scale)

Figure 5: Contig abundance estimation on each simulated community using the mean of the log2 
counts.

Figure 4: Contigs from the large simulated community with 
abundance estimates in the highest 1% show multiple peaks 
in their count distribution as well as very high counts.



Discussion
Using the mean of the log counts seems to perform well in these initial tests. However, low abundance 
contigs have a very large variance in their estimates. Also, extremely high counts in the sample can lead
to overestimates even with the log transform. We suspect that an adaptive transform should be used 
based on the distribution of counts in the sample. At its core, this amounts to finding some function on 
counts based on the whole sample distribution to maximize the accuracy of contig abundance 
estimates. A second dimension can be added to this transformation to account for the frequency of 
observed counts. While machine learning methods could aid in the process of finding insight into 
functions which work, we seek a method with theoretical background.

Future Directions
Besides direct extensions of this line of work as mentioned in the discussion, we have come across 
many ideas which would be interesting to explore in their own right.

Differential k-mer analysis
Even though k-mer count analysis has only two hyperparameters at its core, it is still an open question 
on how to appropriately choose k. One complicating factor in this decision process is that the number 
of possible k-mers is exponential with k which leads to non-smooth changes in the resulting analysis. It 
would be interesting to use a range of k values in a single estimation procedure and see if there are 
features of a contig's count distribution which are persistent.

Multi-sample k-mer database
It is desirable to store k-mer counts across multiple samples compactly and with fast lookup times. This
has direct application in our current work, where we would like to estimate the abundance of a set of 
contigs across hundreds of samples. In addition, k-mers which appear in many samples could lead to 
higher storage efficiency than storing each database individually. However, many k-mers appear only 
in a few samples, leading to a sparse table in some parts and dense in others. These challenges present a
nice software engineering project.

Approximate counts
If our final procedure for estimating abundance uses log counts, then we can drastically reduce storage 
in both the counting process and the resultant database. There has been lots of work in approximate 
counting in other fields and it would be nice to apply this idea to our work.

Topology of k-mer space
Mathematicians study high-dimensional surfaces using topological methods and these methods can also
be applied to a discrete sampling of a space. K-mers naturally live in a sparse k dimensional space and 



we would like to explore the structure of k-mers which occur in all known genomes. Equivalently, one 
could examine properties (cliques, distribution of degree, etc) of the Hamming graph constructed by all
observable k-mers. A deeper exploration should also consider the frequency of each k-mer.

Conclusion
We have shown that while k-mers discard locality information, they retain enough information to be 
applied in novel ways. Our method for contig abundance estimation in metagenomic samples exhibits 
no dependence upon the set of contigs being examined and is very fast to perform. Further work will 
improve the accuracy of abundance estimates by accounting for the distribution of counts in each 
sample. We have also suggested four new areas of exploration because even though k-mers are simple 
to explain, they are ripe with information.
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