
Factoring Point Clouds into Positions and Translations for
Compression

Patrick Owen
University of Maryland

powen@umiacs.umd.edu

Amitabh Varshney
University of Maryland

varshney@umiacs.umd.edu

ABSTRACT
Point cloud data is taken from a still shot of a video taken
from a Microsoft Kinect. A basic algorithm is proposed for
finding frequently occurring translations that map the point
cloud to itself. This algorithm is in turn used to generate
a set of translations combined with a set of vertices that
together cover the original point cloud dataset. Each vertex
is associated with a subset of these translations using a bit
array. A 45% reduction of the number of vertices to be sent
to the graphics card is achieved without reducing the number
of points rendered or the apparent quality. Compression
of the point cloud is achieved with a compression ratio of
1.47. We hope to increase this number in the future, as this
will help reduce the bandwidth necessary to render scenes
scanned from the real world.

1. INTRODUCTION
It is often useful to be able to view real-world places or

events with the ability to move the viewing position inter-
actively. This has become especially true with the rising
popularity of virtual reality because it grants users the abil-
ity to immerse themselves in a scene. For instance, a 3D
reconstruction of an operating room can be used to train
surgeons by allowing them to observe a surgery at any angle
without being afraid of interfering.

Data scanned from the real world often comes in the form
of point clouds, so ideally, point cloud data should be ren-
dered in real time. However, highly detailed scenes often
contain animations with millions of points. Without com-
pressing or simplifying the data, we are limited by the max-
imum transfer rate of data to the graphics card.

However, instead of sending each point to be rendered
to the graphics card, one can instead send a set of points
and a set of transformations to be applied to each point.
This greatly decreases the amount of data that needs to
be sent to the graphics card because it is proportional to
the number of points plus the number of transformations,
while the number of points that are actually rendered is
the number of points times the number of transformations.
Unfortunately, most point sets cannot be expressed in that
way exactly. However, with modifications to this scheme,
some amount of compression can be achieved for real world
data.

For instance, data scanned from the real world can of-
ten have repeating patterns such as keys on a keyboard or
bricks on the side of a building. If the vertices for one com-
ponent is stored, other components can be drawn by asso-
ciating each component with one translation. Subtler self-

similarities also exist, and the purpose of this compression
scheme is to use these self-similarities to build up a list of
vertices and transformations to apply.

While any transformation could be used, for the purposes
of this paper, we restrict ourselves to translations. Decom-
pression involves taking each position and applying each as-
sociated translation to it. If we define this process as “mul-
tiplying” the position set by the translation set, then the
purpose of the compression scheme is to factor a point cloud
into position and translation sets.

2. RELATED WORK
Due to the usefulness of compressing point clouds, several

schemes have already been invented and evaluated. For in-
stance, point clouds can be converted into octrees to group
together the positions of nearby vertices [5]. Julius Kammerl
et al. use a modified octree data structure to encode tem-
poral changes, allowing point cloud streams representing an
animation to also be compressed [1]. Eduardo Pavez et al.
take a different approach by using and compressing a poly-
gon cloud instead of a point cloud [4]. Polygon clouds act
as a compromise between a point cloud and a mesh because
meshes are easier to render, and point clouds are easier to
scan.

For something more similar to our approach, Kim et al.
convert point clouds into vertex and transformation streams
to improve communication bandwidth [2]. This creates the
added advantage that decompression is simply a matter of
applying each relevant transformation to each vertex. Their
approach consists of discretizing the point set and using
the fast Fourier transform to find the autocorrelation of the
point cloud. This is in turn used to find frequently occur-
ring translations, which is used to build the transformation
streams. Unfortunately, the use of the fast Fourier trans-
form means that the computational complexity grows expo-
nentially with the number of bits of quantization.

Maximo et al. present an algorithm to identify self-simi-
larities in a mesh, which is similar to finding common trans-
formations that map parts of a point cloud to itself, but it
focuses more on the benefit such identified similarities has
for mesh processing [3], rather than the reduction of com-
munication bandwidth.

3. APPROACH
The algorithm being described is designed to convert a

point cloud, denoted the original point cloud, into a com-
pressed point cloud, whose format is described later. To
avoid ambiguities, in this paper, a vertex is defined to be



Figure 1: A visualization of a 2D version of a com-
pressed point could. The darker points represent
source vertices, and the lighter points represent vir-
tual vertices. This compressed point cloud has three
translations, and each source vertex uses a subset of
these translations to create virtual vertices. Source
vertices and virtual vertices together form the com-
pressed point cloud.

a point in a point cloud, and a point refers to any point in
space. Each vertex has a vicinity, which is a region defined
to be “close enough” to the vertex so that a point in that
region can replace the vertex in the compressed point cloud.

A compressed point cloud is a set of translations and a
set of source vertices. Each source vertex is associated with
a possibly-empty subset of the translations. To decompress
this point cloud, for each source vertex, a vertex is added
with the same position, and additional virtual vertices are
added for each translation by applying the translation to
the source vertex. Compression is achieved because all that
needs storing are the source vertices, the translations, and
a bit array for each source vertex. Each element of the bit
array determines whether or not the given source vertex is
associated with a given translation. A visualization of a
compressed point cloud is shown in Figure 1.

3.1 Overview
In this paper, we describe and test an algorithm that con-

verts a point cloud to a compressed point cloud as described
previously. This algorithm starts by calling each vertex in
the original point cloud a potential source vertex. These are
vertices that are not associated with any translations, and
they may or may not become source vertices in the com-
pressed point cloud by the time the algorithm finishes. The
next step is to iteratively add translations. Each translation
is associated with some of the vertices, turning potential
source vertices into source vertices when necessary, and the
resulting virtual vertices are used to remove potential source
vertices from the point cloud and act as their replacement.
At the end of the algorithm, all remaining potential source
vertices are turned into source vertices without any transla-
tions.

The main contributor to the size of the compressed point
cloud is the number of source vertices. This is true because
the number of translations is limited by the size of the bit
array associated with each source vertex, so there should
be many more source vertices than translations. For this
reason, running the compression algorithm should ideally
result in as few source vertices as possible, instead relying on

Figure 2: A virtual vertex removes a given poten-
tial source vertex if it in the vicinity of that potential
source vertex. In this diagram, a virtual vertex is
at a location that allows it to remove two potential
source vertices, which are crossed out. The dotted
circles are the boundaries of the vicinities of the po-
tential source vertices. Here, vicinity is defined as
being a fixed distance ε from the vertex.

virtual vertices to maintain the quality of the point cloud. In
other words, the algorithm should remove as many potential
source vertices as possible.

3.2 Measuring Closeness
For this approach to work, there must exist translations

that map several vertices to other vertices in the same point
cloud. However, the coordinates of a vertex are given by
floating point values whose precision far exceeds the density
of the point cloud, so it is unlikely for such a translation
to exist. Therefore, some sacrifices have to be made, and
instead of finding translations that map source vertices to
other vertices in the point cloud exactly, the correspondence
can be approximate. Instead of checking if a point and a
vertex are at exactly the same place, one can check if the
point is in the vicinity of the vertex. See Figure 2 for an
example of how vicinity is used to determine how virtual
vertices replace potential source vertices.

A simple way to define vicinity is to declare that a given
point is in the vicinity of a given vertex if the distance be-
tween them is less than some fixed value ε. If ε is too large,
the compressed point cloud will differ significantly from the
original point cloud when rendered, reducing quality. If ε is
too small, then most source vertices will not be associated
with any translations, causing the size of the compressed
point cloud to be too similar to the size of the original point
cloud.

While this approach is simple, it does not take into ac-
count the fact that how far a vertex can be shifted without
degrading the quality of the point cloud depends on the di-
rection it is being shifted. Point clouds scanned from the real
world contain groups of points which are samples of surfaces.
Therefore, the exact location of each vertex is less important
than the location and shape of the surfaces the vertices rep-
resent. In the real world, most surfaces are smooth and
locally approximate a plane. Therefore, errors in a direction
orthogonal to this plane tend to be worse than errors in a



Figure 3: Under the more complicated definition
of vicinity, the shape of the boundary becomes an
ellipsoid instead of a sphere, or in the 2D case, an
ellipse instead of a circle. The dotted ellipse in this
diagram represents the highlighted vertex’s vicinity.
If it is a potential source vertex, it will be removed
if a virtual vertex lands within this ellipse.

direction parallel to the plane.
To find the plane corresponding to a single vertex and

its immediate neighborhood, principal component analysis
is applied to the vertices within a given distance from the
vertex of interest. The principal component with the small-
est variance is considered to be orthogonal to the plane. A
plane can then be constructed containing the vertex of in-
terest and orthogonal to that principal component.

Keeping this plane in mind, the vicinity of this vertex is
defined to be the interior of an ellipsoid rotated to be aligned
to the principal components and translated so that the el-
lipsoid is centered on the vertex of interest. The radius in
each of the three directions corresponding to principal com-
ponents is proportional to the square root of the variance of
that principal component, or proportional to the standard
deviation. The scale factor used is configurable but constant
for every vertex in the point cloud. To prevent extreme cases
for unusual vertex configurations, a configurable minimum
and maximum radius, fixed in the same way as the scale fac-
tor, is used to clamp each of the three radii of the ellipsoid.

As a special case, if there are not enough vertices close
enough to the vertex of interest to run principal component
analysis, the vicinity is defined by a sphere centered on the
vertex of interest whose radius is the minimum radius. The
vast majority of vertices should not fall into this category.

This modification creates an improvement by allowing the
compressed point cloud to appear more similar to the orig-
inal point cloud without affecting the compression ratio.
Therefore, this definition of vicinity is used for the remain-
der of this paper. See Figure 3 for a visualization of this
definition of vicinity.

3.3 Rating Translations
To achieve a good amount of compression, a translation

should allow a large number of potential source vertices to
be removed and replaced with virtual vertices. However, it is
often difficult to determine how many potential source ver-
tices can be removed by a given translation because a single
vertex may be removable and also able to remove another
vertex, and a decision would need to be made (See Figure 4).

However, the effectiveness of a translation can be more

Figure 4: In this diagram, there are 3 darker
points, representing potential source vertices. The
lighter points represent the location the virtual ver-
tex would be if its associated potential source vertex
became a source vertex. The two rightmost vertices
are replaceable with this transformation, but if the
rightmost vertex is removed, the middle vertex be-
comes a source vertex, so it cannot be removed.

easily estimated. If we assume that every virtual vertex
removes exactly one potential source vertex, we can rate
a translation by counting how many vertices are sent into
the vicinity of a potential source vertex after the translation.
This estimation works because the vertices that are included
in this count can be used to generate virtual vertices that
remove a vertex from the point cloud. For brevity, the count
will be called the coherence of the translation.

While this is usually a good estimate, the coherence vastly
overestimates the effectiveness of a translation when the dis-
tance of the translation is too short. In that case, some or all
potential source vertices can be translated to the vicinities
of themselves. For instance, the identity transformation has
a coherence equal to the number of potential source vertices
in the point cloud because every point is in the vicinity of
itself. To fix this, the only translations considered are those
with a distance larger than the configured maximum radius
used when defining vicinity. This makes it impossible to
map a vertex to the vicinity of itself.

To allow a large number of translations to be tested, in-
stead of translating every vertex to find the exact coherence,
we can translate a random sample of vertices to estimate
the coherence. To elaborate, we choose a random point out
of the pool of source vertices and potential source vertices.
Then, we find its corresponding virtual vertex for the trans-
lation being tested. If this virtual vertex is in the vicinity
of any point in the point cloud, we add 1 to the estimated
coherence. The process repeats enough times to create a
large enough sample size. Then, the estimated coherence is
scaled by a factor equal to the number of vertices divided
by the sample size.

3.4 Finding Good Translations
One way to discover translations with high coherence is to

repeatedly pick a translation between two random vertices
that are far enough apart and measure its coherence. The
translation with the highest measured coherence can then
be chosen. This method is useful because, given all possible
translations, the probability that a specific translation will
be chosen in a given round is approximately proportional to
its coherence. However, many more translations have a low
coherence than a high coherence, so it is still unlikely to find
a good translation without trying many translations.

Using this method to discover translations has made an
interesting trend apparent: smaller translations tend to be
better than larger translations. In fact, most small transla-
tions have a high coherence. This can be explained by noting
that if a vector is on a smooth surface, and it is translated in
a direction parallel to the surface at that point with a short
enough distance, the resulting virtual vertex is likely to be



in the vicinity of another vertex on that surface.
Given this property, an improved method of finding good

translations can be used. It is similar in that it tests multi-
ple translations. However, instead of choosing two random
vertices, one random vertex is chosen, and another random
vertex within a given fixed configurable distance is then cho-
sen. Finally, the coherence of the translation between them
is estimated. This ensures that all tested translations are
small, which means that fewer translations will need to be
tested to find one with a high coherence.

3.5 Choosing Source Vertices
Once a translation is chosen, the next step is to decide

which vertices should use that translation. At first, we
choose every vertex whose corresponding virtual vertex is in
the vicinity of a potential source vertex. Each chosen ver-
tex is associated with the chosen translation. Ideally, this
would be the end of the selection process, as each chosen
vertex would be able to remove at least one more potential
source vertex.

However, the only vertices that can be removed are those
without any translations. Since each chosen vertex is asso-
ciated with a translation, if it was a potential source vertex,
it is changed into a source vertex. Consequently, chosen
vertices that previously seemed useful may stop being use-
ful. For a given chosen vertex, all the vertices it was going
to remove may have turned into source vertices. Since in-
cluding such vertices for the translation would not help the
compression at all, these vertices are disassociated with that
translation.

This completes the process of choosing source vertices.
It should be noted that vertices that were disassociated
may be changed back into potential source vertices if they
were not previously associated with any translations before-
hand. This creates the opposite situation as before, as newly
reestablished potential source vertices could be removable
with the selected translation. However, it is assumed that
such situations are uncommon enough that they can be ig-
nored because it handling such cases is a matter of optimiza-
tion rather than correctness.

This method of choosing source vertices for a given trans-
lation makes the number of source vertices chosen similar
to the number of points that are subsequently removed in
the next step. While it may seem like the safeguards of this
procedure would guarantee that each source vertex for the
translation should remove at least one vertex, this is not al-
ways the case. For instance, two chosen vertices may remove
the same potential source vertex, creating a redundancy. It
is assumed that this situation is uncommon enough to be
ignored.

Once the source vertices have been chosen, they are used
to remove as many potential source vertices as possible with
the chosen transformation. This marks the end of an itera-
tion, and the whole process repeats for the next iteration.

3.6 Configurable Parameters
Now that the full algorithm has been described, it is help-

ful to review its parameters, as the power and quality of the
compression depend on these parameters.

As the algorithm loops, a parameter is needed to refer to
the number of times it loops. This is referred to as the num-
ber of iterations. Each iteration adds a single translation to
the compressed point cloud, so the number of translations

Figure 5: A visualization of the point cloud dataset
from a point of view similar to the location of the
Kinect that scanned the image.

at the end is equal to the number of iterations.
Another parameter is how many translations to try before

picking the one with the highest estimated coherence. This
is referred to as the number of trials. Another parameter is
how many samples to take when estimating the coherence of
a transformation. This is called the number of trial samples.
The range of magnitudes allowed for each tested translation
is configurable, and it is referred to as the minimum and
maximum translation.

A few more parameters are needed to determine how to
find the vicinity of each vertex. Each radius of the ellipsoid
is bounded above and below, and these bounds are referred
to as the minimum and maximum vicinity radius. Principal
component analysis is applied to all vertices within a given
distance to the vertex of interest, and this given distance
is called the vicinity search radius. The square root of each
variance found is then multiplied by a configurable constant,
and this is denoted the vicinity scale factor.

The minimum translation is always set to be equal to the
maximum vicinity radius, as the only purpose of the mini-
mum translation is to prevent any vertex from being mapped
to the vicinity of itself.

4. RESULTS
This algorithm has been tested on a point cloud obtained

from a Kinect recording a surgical operation. The parame-
ters for this algorithm have effects on the power and quality
of the compression. Compression ratios of approximately 1.5
have been achieved, but, due to an inherent limitation in the
algorithm, no combination of parameters has been able to
increase the compression ratio much further. The effect of
each parameter on the compression is discussed.

The main factor that determines the power of the com-
pression algorithm is how many vertices are removed to be
replaced with virtual vertices. Therefore, the number of ver-
tices removed is used to estimate the relative power of the
compression algorithm.

4.1 The Dataset
The point cloud used to analyze the compression algo-

rithm is shown in Figure 5. It consists of 178,774 points.
As the data comes from a single Kinect, each person and
object leaves a shadow in which no points are visible. In
addition, points on the back wall are more spread out than



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.01 0.02 0.03 0.04

Pe
rc
en

ta
ge
 o
f v

er
tic

es

Distance threshold (meters)

Distance threshold vs percentage of vertices 
with neighbors

Figure 6: The relationship between a chosen dis-
tance threshold and the number of points with at
least one other point within that threshold. Note
that above 0.02 meters, relatively few isolated ver-
tices are left.

points closer to the camera. The compression algorithm uses
vicinity to describe if points are close enough together to act
as substitutes for each other, but how close a point needs to
be to fulfill this requirement depends on the density of the
point cloud. The denser a point cloud is, the more precise
the location of each point needs to be, shrinking the region
that can be defined as the vicinity. A basic way of estimat-
ing the point cloud density is to count how many vertices
have a neighbor within a given distance threshold, and to
see how changing this threshold affects the count. Figure 6
shows the result for the point cloud of interest.

4.2 Parameters Used
For point clouds of uniform density, the definition of vicin-

ity should ideally be that few vertices are too deep in the
vicinity of other vertices. Otherwise, replacing vertices with
virtual vertices may reduce the density of the point cloud at
certain locations, creating visible gaps. Therefore, the maxi-
mum vicinity radius should not be greater than 0.02 because
more than 95% of points have neighbors within that distance
(See Figure 6). To test the algorithm, we use a maximum
vicinity radius of 0.01. The minimum vicinity radius is set
to 0.002 because visual inspection has revealed that displac-
ing vertices in any direction with a distance less than this
amount does not noticeably affect the quality. See Figure 7
for reference.

The vicinity search radius is set to 0.02, double the max-
imum vicinity radius. A vicinity scale factor of 0.5 is used
to compromise for the fact that the search radius is double
the maximum radius. The minimum transformation is set
to 0.01, preventing a point from being translated into its
own vicinity, and the maximum is set to 0.02, double the
minimum.

We use 1000 trial samples for estimating coherence be-
cause this number is large enough to provide a good esti-
mate of the coherence, and it is small enough to allow trials
to be run quickly.

Figure 7: At the top is a section of the point cloud
before compression. At the bottom left is the com-
pressed point cloud with the chosen parameters.
At the bottom right is the compressed point cloud
with all parameters representing an absolute dis-
tance doubled (minimum and maximum vicinity ra-
dius, vicinity search radius, and minimum and max-
imum translation). If viewed on a computer mon-
itor, it may be necessary to zoom in. Note that
the bottom-right point cloud has visible gaps rather
than a relatively uniform distribution of points.

4.3 Accuracy of Coherence
The algorithm uses a measure of coherence of a transfor-

mation, which is an estimation for the number of vertices it
will remove. To measure how good of an estimation this is,
500 random transformations were selected using the same
selection scheme as the one the algorithm uses. Figure 8 is
a scatterplot comparing the coherence of the transformation
to the number of vertices it removes when used for a single
iteration of the algorithm.

As shown in Figure 8, the coherence overestimates the
number of vertices removed by approximately 30%. For in-
stance, for transformations with a coherence of around 16%,
only 12% of the vertices are removed.

As for estimated coherence, it is important to quantify
how accurate the estimate is. If the amount of vertices in-
cluded in the actual coherence relative to the total number
of vertices is p, then for each sample, the probability that
the randomly chosen vertex will be included in the coherence
estimation is p, so for n samples, the possible values for the
estimated coherence before scaling falls in a binomial distri-
bution with n trials and probability p. For 1000 samples, in
the worst case that p = 0.5, the difference between the co-
herence and the estimated coherence will be less than 3.2%
of the total number of vertices 95% of the time.

4.4 Trials and Iterations
We finally examine how the number of iterations and the

number of trials affects the number of vertices removed. The
algorithm has been tested with 1 to 32 iterations and 1, 10,
and 100 trials. Because the algorithm uses randomness, it
has been tested 30 times. The results are shown in Figure 9.



0%

2%

4%

6%

8%

10%

12%

14%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

Ve
rt
ic
es
 re

m
ov
ed

Coherence

Coherence vs vertices removed

Figure 8: A plot showing the measured coherence
and actual effectiveness of 500 randomly chosen
transformations relative to the number of points in
the point cloud. A strong positive correlation is ap-
parent, as expected, but coherence tends to over-
estimate the effectiveness of the transformation by
about 30% to 40%.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Ve
rt
ic
es
 re

m
ov

ed

Iterations

Iterations vs points removed

100 trials 10 trials 1 trial

Figure 9: A plot showing how the number of iter-
ations and trials affects the number of vertices re-
moved. Error bars for a 95% confidence interval are
included.

The first thing to note is that the first iteration removes
the most points, and future iterations become much less ef-
fective. When 100 trials are used, a 25% reduction in point
count is achieved by the fourth iteration. A 30% reduction
is achieved by the sixth iteration. However, it takes 14 itera-
tions to achieve a 40% reduction and 24 iterations to achieve
45%.

Another thing to note is that despite the order of mag-
nitude differences in the number of trials, the effect on the
point count reduction is less pronounced, especially after 14
iterations, when the reduction achieved when using 100 tri-
als is only 5% more than the reduction achieved when using
1 trial. This similarity can be explained in two different
ways.

Firstly, the distribution of coherences of transformations
from one vertex to a nearby vertex is not heavily skewed
(See Figure 8). This means that it does not take many tries
to find a transformation with a coherence reasonably close
to that of the best transformation.

Another reason is choosing a transformation with a high
coherence in one iteration reduces the number of points that
can be removed in future iterations, which in turn decreases
the effectiveness of future transformations because many po-
tential source vertices have been turned into source vertices.
For example, if each source vertex is associated with one
translation that removes a single vertex, then at most a 50%
reduction can be achieved regardless of the number of tri-
als. In fact, as shown in Figure 9, the number of vertices
removed appears to asymptotically approach 50%.

4.5 Compression Ratio
The compression ratio of this algorithm depends on how

much data is needed to express the location of a single vertex
in the original point cloud. For instance, suppose each vertex
is represented as three 32-bit floating point number, one for
each coordinate, yielding a total of 96 bits. Then, if 32
translations are used, an additional 32 bits are added to
each vertex, yielding a total of 128 bits per vertex.

As shown in Figure 9, for the given example point cloud,
47% of the vertices are removed, but each vertex holds 33%
more data. Consequently, the compression ratio is approx-
imately 1.42. If 16 translations are used instead, only 16
extra bits are needed for each vertex. Although the number
of vertices removed is reduced to 42%, the compression ra-
tio increases to 1.47. With 8 translations, the compression
ratio is back down to 1.42, which means that using 16 trans-
lations is ideal for this dataset, as the associated bit arrays
can represented as 16-bit integers.

However, if each coordinate is represented using just 16
bits instead of 32 bits, the ideal number of translations is
reduced to 8, and the compression ratio is reduced to 1.32.

5. CONCLUSION
The algorithm presented is successfully able to compress

a point cloud into a set of translations and a set of source
points, each source point associated with a subset of the
translations. A major advantage of this scheme is that de-
compression is simple and easy to parallelize because the
procedure is simply to apply each relevant translation to
each source point and output the result. Each source vertex
can be treated independently this way.

Currently, the number of source vertices in the compressed
point cloud can reach 50% of the number of original ver-



tices. Reducing this number any further is not possible with
the current implementation because no source points can be
removed without removing virtual vertices unintentionally
and leaving a visible gap in the point cloud. While a single
source point can be associated with many transformations,
in practice, most source vertices are associated with only
one translation. This means that when half of the poten-
tial source vertices are removed, most of the other half has
turned into source vertices, creating the limitation.

The algorithm presented is just one of many ways to ap-
proach compressing a point cloud. It has the advantage of
not reducing the complexity of the point cloud while being
easy to decompress. A disadvantage is that each source ver-
tex needs to be associated with a bit array identifying its
translations, and the compression ratio is limited to 2:1 at
the most, often being much smaller. It is also a lossy com-
pression scheme, as vertices are effectively moved to some
point in their vicinity.

It should be possible to achieve better compression by
tweaking the compression algorithm to overcome the 50%
limitation.

5.1 Future Work
The next steps for this algorithm would be to improve

its compression ratio. It should be possible to achieve bet-
ter compression by tweaking the compression algorithm to
increase the likelihood for a single source vertex to be asso-
ciated with more than one translation. Limiting the number
of source vertices could allow this to happen.

For instance, the algorithm turns as many potential source
vertices as possible into source vertices in each iteration.
There is a cost involved in turning a potential source vertex
into a source vertex because the resulting source vertex can
never be removed. Instead, reusing existing source vertices
for multiple translations is desirable. Redefining coherence
to favor translations from existing source vertices and being
more conservative about converting potential source vertices
into source vertices should make it possible to achieve better
compression ratios.

Another potential improvement is to make the algorithm
hierarchical. The resulting source vertices after one pass
of the algorithm can be used as the original point cloud in
another pass of the algorithm. It is unclear whether this
approach is realistic, as the bit array of each source vertex
has to be conserved even when turned into a virtual vertex
by the second pass of the algorithm.

A major limitation of the algorithm is that it completely
ignores any data associated with each vertex other than the
position. As point clouds in the real world have color in-
formation, another scheme would need to be added on top
of the algorithm in this paper to allow the reconstruction of
this color data.

Lastly, this compression scheme may be able to be com-
bined with other existing point cloud compression schemes
to improve upon them. For instance, running this algorithm
after reducing the number of points in the point cloud is
trivial. Combining it with compression schemes that are
more complicated than reducing the number of points is not
guaranteed to create an improvement, as the factoring algo-
rithm is lossy, and a bit array must be associated with each
vertex. It can improve octree compression because instead
of encoding every vertex, only source vertices need to be en-
coded. The associated bit array can be included in the same
way color information would be included [5].

6. ACKNOWLEDGEMENTS
We would like to thank everyone at the Graphics and Vi-

sual Informatics Laboratory (GVIL), including Ruofei Du,
Eric Krokos, Eric Lee, Mukul Agarwal, and others, for pro-
viding feedback and answering any questions we had. We
would also like to thank Mukul Agarwal for providing us
access to the point cloud dataset and Ruofei Du for finding
the paper about polygon cloud compression.

7. REFERENCES
[1] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,

M. Beetz, and E. Steinbach. Real-time compression of
point cloud streams. 2012 IEEE International
Conference on Robotics and Automation, May 2012.

[2] Y. Kim, C. H. Lee, and A. Varshney. Vertex
transformation streams. Graphical Models,
68(4):371–383, July 2006.

[3] A. Maximo, R. Patro, A. Varshney, and R. Farias. A
robust and rotationally invariant local surface
descriptor with applications to non-local mesh
processing. Graphical Models, 73(5):231–242, September
2011.

[4] E. Pavez, P. A. Chau, R. L. de Queiroz, and A. Ortega.
Dynamic polygon cloud compression. arXiv:1610.00402,
October 2016.

[5] R. Schnabel and R. Klein. Octree-based point-cloud
compression. SPBG’06 Proceedings of the 3rd
Eurographics / IEEE VGTC conference on Point-Based
Graphics, pages 111–121, July 2006.


