
Copy-on-Reference File Mechanism
Extends Scope of Dynamic Reconfiguration

Jeremy Krach
Department of Computer Science

University of Maryland, College Park
jakrach@umd.edu

Abstract—Maintaining resource availability for processes as
they dynamically move between hosts is difficult without building
relationships for the underlying namespaces of those resources.
For example, migrating opened files as part of a process migration
system commonly relies upon shared file-systems that provide
a common namespace between hosts. This paper describes a
new technique for process-migration that does not require a
common namespace for file resources, instead migrating the
opened files on reference. The copy-on-reference, or lazy, ap-
proach to file resources adds to a rich corpus of past work on
process migration by dynamically migrating files from different
namespaces instead of referencing static, shared namespaces. In
particular, this technique is motivated by on-going efforts using
dynamic reconfiguration to implement active defense security
mechanisms. By describing the spectrum of past work and
dynamic reconfiguration scenarios suited for a new model, this
study demonstrates the value of copy-on-reference mechanisms
for handling file resources during process migration.

I. INTRODUCTION

Process migration has been an active area for study, with
many tools and capabilities having been introduced. Designers
rely upon migration of running processes to increase the
reliability of their distributed systems, improve performance,
and enhance their security. In our work, process migration
refers to relocation of a running process without substantial
interruption to either its progress or its access to system
resources (specifically opened files). Process migration is one
of the three dimensions of change invoked in our effort to
improve security through active defenses. Hofmeister and Pur-
tilo describe dynamic reconfiguration as change with respect
to any of an applications topology or structure the logical
connectivity of components; its geometry the locality at which
components operate; or its components implementation [1]. In
the present paper, process migration falls within geometry-
based dynamic reconfiguration changes.

When performing migration, the operating system may
manipulate the process as an object that encapsulates code
and data; the location or composition of this object may be
changed accordingly. When a process is changed, we need
a way to maintain the availability of system resources. This
may be done by associating the resources with the old process
in a new location or by remapping the access to a new
(potentially dynamically reconfigured) process. One of the
greater challenges posed by the resource information kept
by the operating system is maintaining access to open file
descriptors.

Despite the vast space of existing projects that offer process
migration, only a subset support file migration beyond shared

file-systems. These projects are effective, and file operations
generally work as expected. Most services accomplish this
by offering a common namespace, where the files location
is primarily immutable: it is up to system to map each file
descriptor to the final location. One such example, networked
file systems (NFS), offer a single namespace so that any process
may reference a file regardless of the processs location within
a network.

Our work in active defenses (which leverages dynamic
reconfiguration to improve a systems security properties) was
substantially constrained by the need to restrict changes to
only environments which could handle open file descriptors
natively. We sought a more general tool to map such system
resources in order to enjoy the full security value of our
technique.

We offer a system that promises consistent read-write
semantics from the point of view of any individual process.
Our approach does not require a common name space in order
to effect change. We enable the agent requesting change to
direct not only how processes should be reconfigured, but
also how their open file descriptors should be remapped. We
accomplish this by accepting a more relaxed view of run time
properties with respect to interplay between processes; two
processes which may have shared an open file on one host
might, after a reconfiguration, have different views (or not)
depending on the changes requested by the agent. This freedom
supports our security research involving active defenses.

Specifically, this paper offers LazyFS, an alternative within
the space of process migration intended to work within user-
space and use the copy-on-reference paradigm for file migra-
tion. This helps populate the diverse spectrum of work on
process migration by providing another option for the end-user.
Under particular circumstances, each technique has strengths
and weaknesses: LazyFS is no different. However, LazyFS
enriches the run-time environment of live process migration
by adding a new tool with a different design methodology.
Its unique feature, lazy file retrieval, allows for migrations
to happen over time, rather than all at once. This feature
applies specifically within dynamic reconfiguration motivated
scenarios, as outlined in the design portion of this paper.

The copy-on-reference file migration scheme drew inspi-
ration from Accent, which uses copy-on-reference to trans-
fer process memory; this achieved a 58% reduction in data
transferred [2]. By lazily retrieving opened files on reference,
LazyFS makes savings over methods that copy the entire file-
system at the time of migration. Although something like NFS



Fig. 1. Process migration spectrum summary

could also prevent mass-file transfer, LazyFS has the advantage
of making no assumptions about the underlying namespaces
of the participating hosts. Additionally, LazyFS brings the
migrated files to the new host so that they are stored locally.
Once local, these files do not rely on network availability.

This paper describes the existing spectrum of process
migration capabilities and demonstrates the gap into which
LazyFS fits. Section 2 outlines the spectrum of current tech-
nology in detail and compares and contrasts process migration
design methodologies. Section 3 focuses on scenarios which
influenced the design of LazyFS and implementation details.
Section 4 describes the results from initial proof-of-concept
experimentation. Section 5 is a discussion of these results
and the implications for the scenarios. The final two sections
outline future work (Section 6) and reflect on the outcomes of
the project (Section 7).

II. BACKGROUND

This research is motivated by the goal of creating a
dynamic reconfiguration system to support active defense of
cyber systems. Such reconfiguration involves moving processes
between hosts within a network and, as a result, file references.
Without assuming common file-system namespaces between
hosts, migration techniques must define mechanisms to map
these file resources from one machine to another. The purpose

of this section is to describe the variety of alternatives existing
in the process migration space and thus motivate our work.

Process migration has a long history of varied approaches.
Mark Nuttall and Dejan Milojicic et al. provide excellent
summaries of past work in this area [3, 4]. Both papers divide
the space into the same general categories: operating system
migrations, microkernel migrations, user-space migrations, and
application-specific or object migration. Generally speaking,
these categories run a spectrum from highly custom and
optimized tools to more generic and portable ones. Each
category, and some examples, are described in the following
subsections.

The spectrum is summarized graphically in figure 1.

A. Operating System Migrations

This category describes custom systems designed to in-
clude process migration support. The benefits of such tech-
niques are primarily performance and completeness: because
these systems are created with process migration as a feature,
they each handle process migration quite well. Typically, the
problem with these systems is that, because they are custom
operating systems, they are not portable. Migration tends to
only be supported between systems running the same custom
system. The overhead of deploying a custom operating system
in order to support process migration outweighs the benefits
provided by these systems for more casual end-users. Despite



the inconvenience of deploying such systems in a general use-
case, they are frequently deployed into distributed compute
environments where the requirements are different.

Sprite, MOSIX, Accent, and Locus are examples of custom
operating systems built with process migration tasks in mind
[3]. Each is a distributed operating system, built (generally)
to allow load balancing and fault-tolerance in distributed
compute environments. Sprite treats a network of computers
as one computer. Its approach to file-migration uses a shared
networked file system for all participating machines [3, 5].
MOSIX segments open file information into upper kernel
global pointers (location) and lower kernel host-local informa-
tion (data) [3, 6]. Accents contribution to this work is the copy-
on-reference memory model, which influenced LazyFS file
migration technique [2]. Locus is UNIX-compatible, however,
the functionality built in requires a large amount of kernel
changes [3, 7]. Although these systems handle process mi-
gration elegantly, the custom kernels introduce difficulties in
support and compatibility.

B. Microkernel Migrations

Microkernel migrations are a modified version of the
operating system migrations described in the previous section.
Microkernel design reduces functionality in the kernel itself
to a small subset, allowing a specific operating system to
handle a large amount of the functionality outside of the kernel.
Integrating process migration at the microkernel level allows
more portability, as the operating system placed on top can
simply make calls into the microkernels migration techniques
[3]. However, its custom kernel design lends itself to the same
drawbacks described for the operating system techniques from
the previous section. Some examples of microkernel designs
supporting process migration are the V kernel, RHODOS,
Arcarde, Chorus, and Mach [3].

C. User-space Migrations

Process migration in user-space provides the most flexi-
bility of all the migration techniques described. By building
applications that are portable (and run in user-space), process
migration has the potential to run on top of popular oper-
ating systems with little configuration or modification. The
most notable example is running process migration in Linux.
Although Milojicic et al. describe migration as not being
a requirement for many end-users, that is rapidly changing
in todays world [3]. With security risks growing and the
popularity of cloud-based applications, process migration can
realistically apply to a wide variety of scenarios not imagined
in the past (i.e. beyond the distributed compute and reliability
use-cases), especially, in our case, active defense activities.
The primary benefit of user-space migrations is their ability
to easily be deployed on top of existing systems and applied
to any application. The downside of such migrations are the
sacrifices in low-level capabilities.

Several popular user-space migration tools have been de-
veloped over the years. An early system, built on top of UNIX,
was designed by Freedman [4, 8]. Despite running on UNIX
with no modifications, the technique does not support any OS
state information, including file descriptors [4, 8]. Another tool
is Condor, which uses checkpoint and restore techniques to

migrate processes between machines. Despite working well for
long-running and compute-intensive processes, the overhead
makes Condor not worthwhile for more short-term processes
or migrations [3]. To handle open file descriptors, Condor
directed system calls back to the original host through a
modified version of the C library [3, 9]. Two more UNIX-
based systems were developed by Alonso & Kyrimis and
Mandelberg & Sunderam. The former added system calls for
taking a checkpoint and restoring processes, but required that
the process to be migrated did not communicate or depend
on other processes [3, 10]. The latter only supported NFS
files [3, 11]. A recent tool, P.Haul (process hauler), uses
the CRIU library to checkpoint a process and also relies
on NFS to restore the process on the new host with the
appropriate file-system namespace [12]. The downside of this
is the requirement of the additional server (NFS) infrastructure
and that the network be maintained for the entire lifespan of
the migrated process.

Within the user-space migration category, there remains a
gap for a tool that supports regular open files, while at the same
time reducing the up-front cost of shipping large amounts of
process data. LazyFS, with its copy-on-reference file strategy,
fits into this capability gap and enhances the current space of
process migration tools.

D. Object Migrations

Object migrations, albeit a less important model in the con-
text of this project, form an important category in the broader
space of process migration. Focusing more on application-
specific migration, these tools generally meet a particular
use case. These frequently take the form of programming
languages or annotations built to take into account distributed
environments where the programmer may want to move a
particular object between machines. One such example is
the Emerald programming language [4]. Within the spectrum,
these fit on the high end above user-space migrations: they are
incredibly portable but have the disadvantage of needing to
have the application created using a particular method (like a
specific language).

III. LAZYFS DESIGN

LazyFS, by design, fills a gap in the process migration
spectrum described in the previous section. Although user-
space migration techniques exist in UNIX, many of them
opt to rely on NFS for a shared file-system namespace.
This introduces a long-term residual dependency on machines
external to the migrated host. Some techniques do not support
opened files at all. LazyFS is designed to perform user-level
process migration and support opened files through a copy-on-
reference paradigm. This design enables a short-term residual
dependency on machines external to the migrated host. The
design and implementation of LazyFS was a several stage
process. Each step of this process is outlined in a section
below. First, scenarios were envisioned to highlight desired
features. Second, modifications to an existing checkpoint and
restore library (CRIU) were outlined to hook into LazyFS on
process restore. Third, a file-system, LazyFS, was designed
and implemented using FUSE (file-system in user-space) to
enable copy-on-reference file access. Finally, the designs came



together to form a cohesive package for running process
migration with open files.

A. Scenarios

The primary goal in designing scenarios was to discover
how file migration through copy-on-reference could enhance
the existing space of process migration: particularly the active
defense and security goals of dynamic reconfiguration efforts.
These scenarios informed the design: not all are perfect fits
for the current implementation of LazyFS. For completeness,
all of the scenarios envisioned are outlined below. The results
section contains more information about which scenarios work
practically with LazyFS as implemented.

1) Limited bandwidth: The first scenario is limited band-
width migration. Limited bandwidth could be enforced as a
requirement for a variety of reasons: perhaps the network
is suffering a distributed denial of service attack, bandwidth
is expensive, or excessive bandwidth would prevent higher
priority tasks from completing. Since network bandwidth is at
a premium in this scenario, another migration scheme might
not be feasible: shipping the entire file-system as a bulk
transfer could clog up the network and maintained network
access over the processs lifetime may not be desirable. Lazy
file migration using copy-on-reference allows files to only
be retrieved as needed and within a limited time window
following migration, reducing stress on the network at the time
of a migration and for the lifetime of the migrated process.

2) Honeypots: Perhaps an administrator would like to
perform dynamic process migration to move a malicious agent
onto a honeypot. When the process is moved to the honeypot,
it expects all the same files it was previously using to also
exist on that system. By crafting a mechanism that intercepts
file system calls, any semantics could be introduced to retrieve
content for those opened files. In this case, migration from
a production host to a honeypot, sanitization or dummy-
data generation could become the policy enforced by said
mechanism. This would ensure the confidentiality and integrity
of the production data while simultaneously misinforming
malicious agents.

3) Maintenance: A system may need to have reduced
access for maintenance. Dynamic file migration allows the
process to rapidly migrate to a different machine for clients
to interact with (assuring minimal downtime), while only
occasionally calling back to the original host to retrieve nec-
essary files. This allows the original host to have maintenance
performed without compromising availability for the particular
process in question. Like the limited bandwidth scenario, this
also covers denial of service attacks. If one host is being hit
with a large amount of illegitimate traffic, it could be migrated
to a new host that is positioned handle the legitimate traffic.
The original host could continue to eat the traffic from the
attack and occasionally respond to requests for a single file
from the migrated host.

4) Rapid short term migration: By focusing on only mov-
ing the files that absolutely need to be moved the initial
cost of performing migrations is much less compared to one
that clones the file-system. This allows for more rapid and
frequent migration: perhaps to confound outsiders peeking into
an internal network. Imagine a pool of machines each with the

capability to run a certain sensitive process. Perhaps employees
or insiders have knowledge about the rotation of the sensitive
process around this pool, but to an outsider it would be more
difficult to predict given rapid migration.

5) IPC: In some models, all the files of interest are moved
at a single point in time (instead of using NFS, they rely
on duplicate local file-systems). Perhaps, however, only one
process is being migrated and the original machine is still being
used for other processes. Imagine also those other processes
are producing information for the process that was migrated
to consume. The previous model would essentially only gain a
snapshot of the old information: dynamic file migration could
allow for additional information to continually come in as files
were fetched dynamically over the network when needed. This
model is more similar to one that uses NFS.

6) Embedded devices: The Internet of Things and embed-
ded devices also provide interesting scenarios for this capabil-
ity. Having a variety of small devices and moving processes
rapidly between them could add even more capabilities. By
removing the cruft of heaving around the entire file-system
with each migration, a copy-on-reference model lends itself to
the smaller memory of IoT and embedded devices.

In addition to each of the above scenarios, LazyFS also
encapsulates any scenario enabled by the general concept of
process migration.

B. CRIU Modifications

Checkpoint/Restore in User-space (CRIU) is an open-
source tool for taking a checkpoint and restoring a process on
a Linux system [12]. In the checkpoint workflow, CRIU saves
information about the current process into a variety of image
files. These files are stored as either Google protocol buffers,
CRIU custom binary data, or 3rd party formats. On restore,
CRIU reads in these image files and recreates the process at
the same point it was checkpointed. As part of this process,
CRIU saves open file data into several image files: reg-files.img
and *fdinfo.img. The reg-files file stores the paths to any file
opened by a call to open(). The fdinfo files store information
about all the open file descriptors for that process. Performing
a union over these files gives us the file descriptor and path
for any opened regular files used by the checkpointed process.
This information is all that is required to retrieve files for a
checkpointed process; as such no modifications were made to
the checkpoint logic.

On the other hand, the restore logic needed some simple
modifications. The changes are kept at this fork of the main
CRIU repository: https://github.com/jakrach/criu. Since the
changes are quite minimal, they have been included in their
entirety in figure 2.

This code is introduced into CRIUs logic for restoring
regular, open files. First, it checks whether the file to restore
exists on the current host. If the file is not present, then the
files path is altered to point to a location managed by LazyFS
rather than throw an error. This is done by prepending /lazyfs/
to the file path and replacing all previous directory delimiters
(/) with a notation LazyFS will recognize (.) to reconstruct the
path when performing file retrieval.



Fig. 2. Code change in modified CRIU repository

C. LazyFS Architecture

The LazyFS utility is implemented in Golang. LazyFS
relies on go-fuse, the implementation of the file-system in user-
space interface in Golang. LazyFS also uses the protocol buffer
library for parsing some of CRIUs image files. LazyFS is
open-source and available at https://github.com/jakrach/lazyfs.
The program, when run, mounts a directory at the specified
mount point with files representing all the regular open files
of the process whose checkpointed image files are specified at
the command line. These files, initially, are placeholder files
that have no contents (however, their size is accurate to the
expected file size from the checkpoint). Once one of these
files is read from or written to, LazyFS uses SCP to retrieve
the remote file from the original host. Once the file has been
copied, it is kept locally. Any further operations on that file
will simply loop back to the local copy.

Since the repository is relatively small, the details of each
file will be covered here.

1) protobuf/: This directory contains a condensed version
of the protocol buffer specification from CRIU. This gives the
structure for both the reg-file.img and *fdinfo.img files. It can
be compiled into Golang, which allows the rest of the code to
parse out the appropriate information from CRIU image files.

2) files.go: This file defines a structure called LazyFile
and common file operations on that structure. A LazyFile
contains a link to the protocol buffer structure, the original
file path, and a link to the local copy of the file, if it has
been retrieved. The majority of the functions on LazyFiles
are standard and execute if there exists a local copy of the
file. The two interesting functions are Read and Write. Both
check if a local copy exists and, if not, retrieve the file from
the original host by performing a SCP call. The details of that
call are found in fetchRemote.

3) lazyfs.go: This file contains the bulk of the management
logic for the file-system itself. It defines the LazyFS structure,
which contains information about the remote host and a map
of protocol buffers from CRIU representing open regular
files. LazyFS defines GetAttr to pull information about

the represented files from the protocol buffers, OpenDir to
retrieve the listing of represented files, and Open to retrieve
a LazyFile representation of the file requested. This file
also houses the main function, which verifies the user input,
parses the CRIU image files, and mounts the FUSE interface.
The main function also handles SIGINT by gracefully shutting
down.

4) reader.go: This file contains the logic for parsing the
image files from CRIU. The ImageReader interface speci-
fies the required functions for parsing a given file format. Since
LazyFS is only concerned with data from the reg-files.img and
*fdinfo.img files, only two parsers are defined: RegFileImg
and FdinfoImg. The CRIU image files are stored as an array
of protocol buffers. Both parsers traverse the array and extract
each element one-by-one. The specifics of these file formats
were not well documented and as a result had to be reverse
engineered. However, the structure was easy to predict and,
once understood, consistent between files.

D. Complete Migration

The entire process for performing a migration is dia-
grammed in figure 3. First, a process is started on the original
host. While executing, the process is checkpointed by a user
running the criu dump command. The CRIU version on the
original host does not need to be the modified version since
the changes only impact restores. The dump command creates
CRIU image files representing the checkpointed process. From
there, the user must copy the image files to the new host.
The LazyFS process is then launched on the new host, using
the image files from CRIU. This instantiates placeholder files
in the LazyFS mounted directory. The process can now be
restored on the new host by using the modified version of the
criu restore command. As soon as the restored process
accesses (through read or write) one of its opened files, LazyFS
will retrieve the file from the original host with SCP and use
the local copy for all further read and write queries.



Fig. 3. Migration process using LazyFS (icons courtesy of flaticon.com)

IV. RESULTS

Two video demonstrations can be found on the aforemen-
tioned GitHub page. Each involved a simple program running
with a single file opened for either reading or writing (each
experiment focused on one mode). The network traffic for
both programs was measured when using LazyFS to perform
migration and using NFS for the same task. The graphs of the
traffic are below.

V. DISCUSSION

The primary goal of this research is to provide a new
capability in the process migration space that aligns with the
research objectives of ongoing dynamic reconfiguration efforts
within the SEAM (Software Engineering at Maryland) group
[13]. Here, the new capability takes an alternative approach
to the oft-neglected problem of opened files within the user-
space side of the process migration spectrum. The current
space has two approaches for opened files (1) ignore opened
files and trust the process will not use any or (2) rely on
a duplicate file-system or NFS. The first approach is not a
realistic assumption, as many processes that would benefit
from migration frequently use the file-system. The second
approach does handle files, but makes key assumptions that
LazyFS does not. NFS assumes the network will remain
available throughout the entire lifetime of the migrated process.

LazyFS only assumes network availability for the initial start-
up and some period after to allow complete lazy migration.
LazyFS adopts a short-term residual dependency, contrary to
NFS-based techniques long-term residual dependency.

This assumption can be understood by looking at the graphs
describing the network traffic in each trial. The NFS tests
relied on the network, sending packets regularly throughout
the processs duration. The LazyFS tests sent their data earlier
on in bulk, slowly tapering off until the network was no longer
used. This demonstrates the space that LazyFS fits within the
process migration spectrum: LazyFS provides support for file
migration without a long-term residual dependency like NFS.
Although LazyFS still relies on the network to some extent, its
dependency lessens as the process continues to run, eventually
becoming nonexistent. The more file operations and the longer
running a process, the more appealing LazyFS will appear
relative to NFS. That said, certain use cases may find one
approach more useful than the other. For example, by copying
the file from the original host to the new host, other processes
on the original host will not receive or be able to transmit any
modifications to the original file. This is good, as LazyFS is
not out to replace NFS-based migrations, only provide a new
alternative that provides different capabilities. However, it is
worth noting that the mechanism of intercepting read and write
calls on process restore allows the introduction of arbitrary



Fig. 4. Network traffic for read example process migration using LazyFS.

Fig. 5. Network traffic for read example process migration using NFS.

Fig. 6. Network traffic for write example process migration using LazyFS.

Fig. 7. Network traffic for write example process migration using NFS.

policies to enable different semantics for file migration.

LazyFS directly supports several scenarios envision in the
design section. The most obvious fits are the first and third

scenarios: limited bandwidth and maintenance. The previous
discussion of LazyFS vs. NFS particularly highlights the
ability of LazyFS to draw out its migration over the long
term and rely less on the network as time goes on. Short-
term migration and embedded device migrations may be better
suited to an NFS-based approach, as repeated migrations would
repeat the cost of migrating files when using LazyFS as it is
currently implemented. Modifying LazyFS to have repeated
migrations refer back to the original host could resolve that
particular drawback, but could introduce additional issues.
LazyFS also does not support the honeypot scenario: however,
a modification of the LazyFile could replace the SCP
logic with a scrubbing or scrambling function that cleans or
manipulates the data before returning it to the migrated process
(thus preventing the service on the honeypot from accessing
the original, sensitive data). Finally, the IPC scenario is more
suited to an NFS-based migration scheme.

All said, LazyFS enables scenarios in new ways and
extends the current feature space of user-space based process
migration techniques. By using copy-on-reference, LazyFS
relies on the network less than the traditional NFS approach.
This allows user-space migrations to use regular files that
are not hooked up to NFS, a limitation of earlier process
migration tools that worked in user-space (such as P.Haul).
Additionally, LazyFS enables migrations between hosts that do
not share a common resource namespace. LazyFSs approach
of intercepting file-system calls through FUSE also enables
the designer of active defense systems to build arbitrary file
migration policies not explored here. As such, LazyFS has
found a new niche within the process migration spectrum.

VI. FUTURE WORK

The SEAM group has several projects in the works in-
volving dynamic reconfiguration [13]. These projects gener-
ally focus on the active defense implications of introducing
change at various levels of the security stack. One project, for
example, deals with network topology reconfiguration through
a software bus API. Another is looking into the models needed
to predict when network-level reconfiguration is necessary to
counter security threats. LazyFS deals specifically within the
space of geometric reconfiguration by opening new capabilities
for process migration.

Within the LazyFS project, there is still work to be
done. More tooling in the form of scripts or fully-integrated
software packages (combining CRIU modifications and file-
system code) would make performing migrations easier on the
designer looking to use LazyFS as a full-on migration tool.
Implementing and envisioning additional scenarios would help
extend the prevalence of LazyFS and provide incentives for
adoption. Adding robust testing would ensure quality for future
development.

VII. CONCLUSION

LazyFS introduces a new method for process migration
that fits a niche unsatisfied by previous work. The spectrum of
process migration capabilities runs from custom-built operating
systems to user-space programs layered on-top of existing
systems. By introducing copy-on-reference as a scheme for mi-
grating opened files, LazyFS handles file migration differently



than many existing user-space process migration tools, which
rely on a shared file-system namespace, typically through NFS.
Such a design enables a wide variety of scenarios that include
security, reliability, and convenience implications. LazyFS
demonstrates the diverse applications that copy-on-reference
design can bring to process migration, as already seen with
process memory in the Accent system [2]. By utilizing FUSE,
LazyFS also introduces the ability to enforce arbitrary file-
migration policies within user-space process migration.

All code used in this project is open-source and available
on GitHub at https://github.com/jakrach/.

ACKNOWLEDGMENT

I would like to thank Dr. James Purtilo, director of the
Software Engineering at Maryland (SEAM) group, who served
as my advisor throughout this research.

REFERENCES

[1] J. Purtilo and C. Hofmeister. “Dynamic Reconfiguration of Distributed
Programs,” 11th International Conference on Distributed Computing
Systems, pp. 560–571, May 1991.

[2] E. Zayas. “Attacking the process migration bottleneck,” ACM SIGOPS
Operating Systems Review, vol. 21, no. 5, pp. 13–24, Nov. 1987.

[3] D. S. Milojii, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou.
“Process migration,” ACM Computing Surveys, vol. 32, no. 3, pp. 241-
299, Sep. 2000.

[4] M. Nuttall. “A brief survey of systems providing process or object
migration facilities,” ACM SIGOPS Operating Systems Review, vol. 28,
no. 4, pp. 64–80, Oct. 1994.

[5] F. Douglis and J. Ousterhout. “Transparent process migration: Design
alternatives and the sprite implementation,” Software Practice and Expe-
rience, vol. 21, no. 8, pp. 757–785, Aug. 1991.

[6] A. Barak and A. Litman. “MOS: A multicomputer distributed operating
system.” Software Practice and Experience, vol. 15, no. 8, pp. 725–737,
Aug. 1985.

[7] B. Walker, G. Popek, et al. “The LOCUS distributed operating system,”
Proc. 9th ACM Symp. on Operating System Principles, pp. 49–70, 1983.

[8] D. Freedman. “Experience building a process migration subsystem for
UNIX,” USENIX Winter Conference, pp. 349–354, Jan. 1991.

[9] M. Litzkow and M. Solomon. “Supporting checkpointing and process
migration outside the UNIX kernel,” USENIX Winter Conference, pp.
283–290, Jan. 1992.

[10] Alonso, R. and Kyrimis, K. “A Process Migration Implementation for
a UNIX System,” Proceedings of the USENIX Winter Conference, pp.
365372, Feb. 1988.

[11] Mandelberg, K. and Sunderam, V. “Process Migration in UNIX Net-
works,” Proceedings of USENIX Winter Conference, pp. 357363, Feb.
1988.

[12] CRIU. [Online]. Available: https://criu.org/Main Page. Accessed: Feb.
12, 2017.

[13] J. Purtilo. Software Engineering at Maryland. [Online]. Available:
https://seam.cs.umd.edu/. Accessed: Feb. 12, 2017.


