
Hierarchically Visualizing Metagenome Assembly Graphs with
MetagenomeScope

Marcus Fedarko∗

University of Maryland
College Park, Maryland
mfedarko@umd.edu

Jay Ghurye
University of Maryland
College Park, Maryland

jayg@cs.umd.edu

Todd Treangen
University of Maryland
College Park, Maryland
treangen@umd.edu

Mihai Pop
University of Maryland
College Park, Maryland
mpop@umiacs.umd.edu

ABSTRACT

Manual inspection of sequence assembly graphs can be useful not

only as a debugging tool when developing assembly software, but

also as a way to uncover interesting biological patterns, such as

structural differences between the two or more haplotypes being

analyzed in a genomic or metagenomic experiment. Current tools

for visualizing these graphs, however, emphasize a high-level rep-

resentation, based on force-directed layouts, aimed at revealing

the broad level quality of an assembly rather than its small scale

structure. As a result, it is difficult for users to piece together a uni-

fied understanding of both the high-level structure of the assembly

graph and the detailed patterns found within these graphs.

We present a new strategy for displaying genome assembly

graphs that emphasizes the expected linear structure of genome

assemblies and allows a multi-level exploration of the structure of

the graph. This approach is implemented in MetagenomeScope, an

interactive web-based tool.

We detail the novel layout algorithm employed byMetagenomeScope

and provide a qualitative comparison with the main tools currently

used to explore genome assembly graphs. We demonstrate that

MetagenomeScope provides a set of unique capabilities that enable

the effective visual exploration of assembly graphs in the context

of several common workflows, such as genome finishing or the

discovery of structural variants within assemblies.

CCS CONCEPTS

·Human-centered computing→ Visualization systems and

tools; · Applied computing→ Computational genomics;

KEYWORDS

Visualiation, Metagenomics, Assembly Graph

ACM Reference Format:

Marcus Fedarko, Jay Ghurye, Todd Treangen, and Mihai Pop. 2018. Hierar-

chically Visualizing Metagenome Assembly Graphs with MetagenomeScope.

In Proceedings of University of Maryland Department of Computer Science

(UMDCS).ACM,NewYork, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

∗The student for whom this undergraduate honors thesis is presented.

UMDCS, Spring 2018, College Park, Maryland USA

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Modern approaches for genome assemblyÐthe computational pro-

cess of reconstructing a genomic sequence from the many small

DNA fragments "read" by a sequencing instrumentÐrely on graph-

theoretic algorithms. Specifically, the assembly problem is formu-

lated as the traversal of a graph that encodes the links between

DNA segments whose adjacency is implied by the sequenced reads.

Repeats, sequencing errors, mutations, and other genomic features

complicate the structure of this assembly graph, giving rise to

branching and cyclic paths which make it difficult to automatically

identify the traversal of the graph that spells out the correct genome

sequence. Resolving this complexity frequently necessitates man-

ual inspection of the graph and even the generation of additional

experimental data, in a process known as finishing, in order to

complete the assembly process [14].

Effective visualization of assembly graphs can substantially speed

up the finishing process. More importantly, however, in many cases

the assembly graph contains information about interesting biolog-

ical signatures. In the case of eukaryotic genomes, the assembly

represents the combination of two distinct haplotypes, and struc-

tural differences between these haplotypes (an important genetic

feature) appear as "bubbles" in the graph. In the case of metage-

nomic data resulting from the sequencing of complex microbial

mixtures, the assembly comprises multiple haplotypes (genomes of

closely related strains co-existing in a sample), and the assembly

graph can reveal structural genomic variants associated with inter-

esting biological phenomena such as antigenic drift or lateral gene

transfer.

Current tools for visualizing assembly graphs are limited in their

ability to display a hierarchical, semi-linearized overview of a graph.

Many tools employ force-directed layout algorithms for positioning

contigs (nodes in the graph which represent fragments of DNA)

and the edges between them, which can result in visualizations

that generate an appealing high-level representation of the graph

but make analysis of details (for example, łbubblež-like regions) in-

tractable. This is a particular downside for metagenomic assemblies,

where analysis of these fine-grained details can provide valuable

biological insights.

MetagenomeScope addresses the limitations of current assembly

visualization tools through a novel hierarchical layout process that

results in a semi-linear representation of the assembly graph, and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

UMDCS, Spring 2018, College Park, Maryland USA M. Fedarko et al.

through the automatic detection of certain structural patterns in

the graph. Our tool is implemented as a client-side web application

and provides an array of controls for interacting with assembly

graphs.

2 RELATED WORK

Several tools were developed in recent years for the visualization of

assembly graphs. These include Bandage [16], ABySS-Explorer [12],

and Ray Cloud Browser [7]. Many of these tools are primarily tar-

geted at the needs of users of their corresponding assembly pro-

grams: ABySS-Explorer was designed to support ABySS [15] and

Ray Cloud Browser supports Ray [2]. Bandage, though, was devel-

opedwith similar general applications inmind asMetagenomeScope.

Below we highlight some of the key differences between our work

and these prior approaches.

2.1 Layout Differences

Bandage, ABySS-Explorer, and Ray Cloud Browser all use force-

directed layout algorithms for depicting assembly graphs, which

can complicate the inspection of small-scale details in their visual-

izations. MetagenomeScope uses Graphviz’ [6] dot tool to perform

hierarchical layout, with an extra graph linearization step based on

identified structural patterns of contigs. (Section 3.1 provides an

in-depth description of MetagenomeScope’s layout process.)

Figure 1: Screenshot captured in Bandage v0.8.1 of a spec-

ified region of an E. coli assembly graph. The graph was

drawn as a łdouble graphž in Bandage’s linear layout mode

with otherwise default settings. Selected contigs are out-

lined in blue by Bandage.

To demonstrate the differences between the two approaches

we highlight a region of a Velvet [17] Escherichia coli assembly

graph (E_coli_LastGraph) distributed with Bandage, rendered in

Bandage (Fig. 1) and MetagenomeScope (Fig. 2). In both cases, the

visualization has been zoomed to fit the selected contigs 38+, 180+,

58+, 174-, 57-, 266+, 219-, 218-, 217-, 77+, 236-, and 78+ (the + or

- sign indicates the inferred strand of the DNA).1 Bandage’s rep-

resentation of this region is visually dense, and does not reveal

much insight into the contigs’ relative positions in the assembly

1As can be seen in Figs. 1 and 2, the identifiers used for contigs that lack a definite
orientation differ slightly between Bandage andMetagenomeScope. MetagenomeScope
omits + signs, and uses the - sign (where applicable) as a prefix instead of as a suffix.
So the same list of contig identifiers in MetagenomeScope is 38, 180, 58, -174, -57, 266,
-219, -218, -217, 77, -236, and 78.

Figure 2: Screenshot captured in MetagenomeScope of the

same region of the same graph as in Fig. 1. The collec-

tions of contigs highlighted in blue have been flagged

as łbubbles,ž regions of the assembly graph exhibiting a

converge→diverge→converge pattern [13]. The thicknesses

of edges in the display relate to the number of links sup-

porting the corresponding connection between two contigs;

edges highlighted in red are supported by a significantly

large amount of links. See section 3.1.2 for details on how

edge weights are visually represented in MetagenomeScope.

graph. MetagenomeScope’s representation, however, clearly high-

lights the connections between these contigs, as well as the relative

multiplicities of the edges between them.

2.2 Application Environments

Bandage and ABySS-Explorer are desktop applications, while Ray

Cloud Browser and MetagenomeScope are web applications.

Web applications like MetagenomeScope and Ray Cloud Browser

reduce the amount of work needed for end users to view visualiza-

tions, since the installation process is replaced with merely opening

a window in a web browser. This functionality makes the tools

easier to use; however, it limits the complexity of the graphs that

can be rendered due to limits in the computational resources made

available by web browswer or available on a user’s computer. Such

resource limitations are most relevant for the computation of the

graph layout. Ray Cloud Browser relies on server-side code for

this task while MetagenomeScope performs this task off-line in its

preprocessing script.

3 METHODS

3.1 Hierarchical graph layout

MetagenomeScope relies on the layout algorithms implemented in

the Graphviz package [6], specifically the dot hierarchical layout

engine, modified as follows. First, the graph is decomposed into

a collection of structural patterns as described in more detail in

section 3.2. These patterns are then grouped together throughout

the layout process in order to retain the visual presentation of these

small-scale details.

We initially structured these patterns by defining them as łclus-

ters,ž using a feature of the language supported by dot. However, we

noticed that dot tended to route edges through the borders defined

by the clusters, thereby making the graph difficult to interpret (see

Fig. 3 for an example).

Hierarchically Visualizing Metagenome Assembly Graphs with MetagenomeScope UMDCS, Spring 2018, College Park, Maryland USA

Figure 3: dot’s layout of a sample assembly graph

(sample_LastGraph) provided with Bandage. The input

DOT file used for this layout was created without using

the structural pattern backfilling technique described in

section 3.1. (This figure, along with Fig. 4, was generated

using dot -Tpng with the lines rotate=90; and dpi=50;

added to the header of its DOT file in order to rotate the

output image and decrease its resolution to fit within this

document.)

To address this issue, we modified the invocation of dot by laying

out the contents of each structural pattern in isolation (calling dot

once for each structural pattern) and saving the relative positions of

the contigs within each pattern, as well as the dimensions of each

pattern’s bounding box. In a final invocation, we represent each

structural pattern as a single node, using the dimensions determined

in the earlier layout step, then łbackfillž the original contigs and

edges within the corresponding regions in the graph. This process

is possible because MetagenomeScope limits contigs to being in at

most one pattern, so the set of contigs contained in a given pattern

is guaranteed to be disjoint from the sets of contigs contained in

other patterns in the graph.

Figure 4: dot’s layout of the same assembly graph as in Fig.

3. The input DOT file used for this layout was created us-

ing the backfilling technique described in section 3.1. Notice

the linearity of this layout compared with that in Fig. 3 that

has been introduced by preventing edges from being routed

through contig groups.

We found that this technique not only addressed the routing

of edges through structural patterns, but also significantly helped

linearize dot’s layout for many graphs containing structural pat-

terns. An example of this effect is shown in Fig. 4. For comparative

purposes, versions of the DOT files specifying layouts without back-

filling being used (as in Fig. 3) can be generated using the -nbdf

option in MetagenomeScope’s preprocessing script, and versions of

the DOT files specifying layouts with backfilling (as in Fig. 4) can

be generated using the -pg option.

3.1.1 Contig Scaling. Contigs’ sizes are scaled in the displayed

graph by their length. Due to the wide range of contig sizes found

within a typical assembly, MetagenomeScope scales contigs such

that the area occupied by a contig’s symbol in a visualization of

a connected component of the assembly graph is proportional to

the contig’s relative length in that connected component. Con-

tig lengths are also scaled logarithmically beforehand in order to

maintain compactness while adequately highlighting differences in

contig sizes.2 In order to help visually elucidate significant relative

differences in contig length, MetagenomeScope also adjusts contigs’

proportions (keeping area constant) based on their relative length.

3.1.2 Edge Scaling. The thicknesses of edges in the graph are

also scaled to highlight the number of links connecting a pair of

contigs. As edge weights are difficult to evaluate visually, we also

add color to flag edges that are unusually łthickž or unusually łthinž

when compared to other edges in a given connected component of

the graph. These outlier edges are detected using Tukey fences as

detailed in [18], and their thickness is set as either the maximum

or minimum thickness available, based on whether the outlier edge

in question was a high or low outlier. These outlier edges are also

specially colored to indicate their relatively abnormal high or low

multiplicity. This approach aids in providing a quick visual indi-

cation of which edges have relatively high or low multiplicities,

setting MetagenomeScope apart from tools like Bandage [16] which

do not incorporate edge weight metadata into the visualizations.

The thicknesses of edges not determined to be outliers in their

connected components are set relatively; since outlier edges are

not considered in these calculations, relative scaling in this context

should be less vulnerable to extreme values skewing the dataset.

3.2 Detection and Highlighting of Structural
Patterns

Certain structures in genome assembly graphs correspond to ei-

ther errors (e.g., łbubblesž caused by sequencing errors) or bio-

logical phenomena such as differences between co-assembled hap-

lotypes. As described earlier, the layout algorithm employed by

MetagenomeScope can use these patterns to generate a layout that

is visually informative. We limit the scope of pattern identification

so that single contigs are assigned to at most one pattern. This

enables the hierarchical layout of the graph, as each pattern can

thus be replaced by a single virtual node (as detailed in section 3.1).

MetagenomeScope automatically detects four types of structural

patterns present in many assembly graphs: łbubbles,ž łfrayed ropes,ž

łchains,ž and łcyclic chains.ž

Bubbles and frayed ropes indicate regions of the graph exhibiting

a diverge-converge or converge-diverge pattern, respectively [10].

Bubbles can indicate sequencing errors or real polymorphisms be-

tween co-assembled haplotypes, and frayed ropes can be a signature

of repetitive sequences.

We define łchainsž as any sequence of two or more unambigu-

ously linked contigs within an assembly graph.

łCyclic chainsž are defined as chains that form a cycle, with

the purview of łchainž slightly expanded in this case to include

single-contig cycles. These types of patterns potentially indicate

2We use a base 10 logarithm by default, although the base is set as a configurable
variable (CONTIG_SCALING_LOG_BASE) in MetagenomeScope’s source code.

UMDCS, Spring 2018, College Park, Maryland USA M. Fedarko et al.

the presence of tandem repeats in the underlying sequence, or

represent complete circular chromosomes or organelles.

MetagenomeScope can also accept patterns defined by an ex-

ternal file, thereby allowing users of the tool to visualize complex

patterns or to study specific biological phenomena that are cur-

rently not captured by the patterns described above.

The patterns, whether identified automatically byMetagenomeScope

or generated by an external tool, are higlighted with a different

background in the graph, and can be dynamically collapsed and

uncollapsed by the user in MetagenomeScope’s viewer interface.

Figs. 5 and 6 demonstrate this functionality, showing how it helps

to simplify the region of the graph being visualized.

Figure 5: Third largest connected component of a human

metagenome assembly graph (accession ID SRS049950), vi-

sualized inMetagenomeScope. Bubbles are highlighted blue,

frayed ropes are colored green, and chains are colored red.

Figure 6: Same component of the SRS049950 assembly graph

as in Fig. 5, with all identified structural patterns collapsed.

In addition to their rolewhen laying out the graph,MetagenomeScope

uses these identified patterns while drawing the graph in the viewer

interface. During the drawing process for a given connected compo-

nent of a graph,MetagenomeScope first draws the colored bounding

boxes of each pattern in the component, followed by all contigs

in the component, and ending with all edges in the component.

This behavior helps the user obtain some limited understanding of

the graph while it is being drawn; for particularly large connected

components where displaying the graph can take more than a few

seconds, this feature can provide the user with an initial overview

of the graph’s density of patterns.

3.3 SPQR Tree Decomposition

Figure 7: Assembly graph based on Fig. 2a in [13], visualized

in MetagenomeScope’s łstandard mode.ž

The SPQR tree data structure [1] provides a decomposition of a

biconnected graph into its triconnected components. Each tricon-

nected component in the original graph corresponds to an individ-

ual node in the SPQR tree (here referred to as łmetanodesž in order

to alleviate confusion with contigs). SPQR trees have been proposed

as a means for hierarchically decomposing assembly graphs [11],

as well as for identifying complicated bubble-like regions in these

graphs [13].

MetagenomeScope supports the use of SPQR trees as a means for

decomposing biconnected components within an assembly graph

into smaller, iteratively expandable regions. This functionality is

available in MetagenomeScope’s SPQR łdecomposition mode,ž a

distinct method of visualization from the łstandard modež that is

organized around the subgraph patterns described above.

Figure 8: Same graph as in Fig. 7, presented as a fully uncol-

lapsed SPQR tree in MetagenomeScope’s explicit SPQR de-

composition mode. The children of every non-leaf metan-

ode in the SPQR tree can be iteratively uncollapsed and col-

lapsed in MetagenomeScope’s viewer interface, providing a

hierarchicalmeans of dynamically altering the graph’s com-

plexity.

There are two łsub-modesž of MetagenomeScope’s decomposi-

tion mode. In both cases, the specified connected component of

the assembly graph is drawnÐlike in MetagenomeScope’s standard

modeÐwith the main distinction that every biconnected component

in the currently-drawn connected component is collapsed to the

root metanode of its respective SPQR tree. These two sub-modes

differ in the ways in which these SPQR trees are uncollapsed, and

in which information about the biconnected components’ structure

is thus iteratively revealed.

The first of these sub-modes is łimplicitž SPQR tree visualization,

in which right-clicking (or tapping with two fingers, for touch-

enabled devices) on a metanode within a given biconnected compo-

nent’s SPQR tree merges the child metanodes of the clicked metan-

ode into the currently displayed biconnected component, providing

Hierarchically Visualizing Metagenome Assembly Graphs with MetagenomeScope UMDCS, Spring 2018, College Park, Maryland USA

an iteratively more detailed view of the structure of the biconnected

component in question. This sub-mode helps to provide the user

with a high-level overview of the graph’s structure.

The second of these sub-modes is łexplicitž tree visualization.

In this sub-mode, right-clicking (or tapping with two fingers) on a

metanode within a SPQR tree reveals the child metanodes of the

clicked metanode, thus revealing an additional section of the literal

SPQR tree structure. Fig. 8 shows an example of a fully uncollapsed

tree in MetagenomeScope’s explicit SPQR decomposition mode.

This sub-mode helps provide a visual explanation of the precise

structure of biconnected components’ SPQR trees. We posit that

this functionality may be useful from a didactic standpoint, when

explaining SPQR trees to those unfamiliar with the data structure.

3.4 Scaffold Visualization

Figure 9: Region of a biofilm assembly graph visualized in

MetagenomeScope. Contigs containedwithin a selected scaf-

fold are colored darker than other contigs to indicate their

selection status.

Figure 10: Example of an erroneously generated scaf-

fold in the SRS049950 assembly graph, visualized in

MetagenomeScope. The discontiguous nature of the scaffold

is immediately apparent from cursory visual inspection.

A scaffold consists of a set of contigs within an assembly graph

that are joined together into a path [8]. Scaffolding is usually per-

formed by stand-alone software tools relying on complementary

sources of information, such as mate-pairs or physical mapping

data. To help users evaluate the correctness of the results produced

by such tools, MetagenomeScope allows users to provide scaffold

information through an AGP file. The scaffold information is then

overlaid onto the graph, as shown in Fig. 9. This information can

help identify inconsistencies, such as the situation shown in Fig. 10

where the contigs determined to be adjacent by the scaffolding soft-

ware are not connected by a valid path within the assembly graph.

In this particular example, the visual inspection of the scaffolds

allowed us to determine that such mistakes were associated with

bubble-like patterns, and closer inspection of the scaffolding code

revealed a bug in the way node orientations were processed in such

regions.

3.5 Finishing Tools

An assembly graph is an inherently intermediate structure. The

goal of assembly is the reconstruction of the complete genome

sequence of an organism from the complexity represented within

the assembly graph. In most cases, this goal cannot be achieved in

a fully automated fashion, and human intervention is necessary,

often supported by additional experiments meant to disambiguate

the path taken by the genome through the assembly graph. This

process is commonly referred to as finishing.

To aid in this endeavor, MetagenomeScope’s viewer interface

includes functionality that allows the interactive selection of paths

through an assembly graph. A path manually selected by the user

can then be exported in AGP or CSV format suitable for further

processing. Fig. 11 shows a demonstration of a finishing process in

progress: immediately after selecting the contig labelled k99_180779

during a finishing process, many other contigs become available for

traversal along the path. Selecting one of these contigs adds that

contig to the path and repeats the process at the next branching

point in the path. The finishing process ends automatically when

no contigs can be added to the path.

Figure 11: Example of visual feedback provided to the user

in MetagenomeScope’s interactive finishing tools. The con-

tigs with a light blue border represent alternate paths orig-

inating from a specific contig, which is also colored light

blue to indicate its łvisitedž status in the path. This figure

also demonstrates MetagenomeScope’s configurability in its

color settings: all of the colors used in the viewer interface’s

graph visualizations can be modified, and these settings can

be exported and imported in order to be reused. Here, the

viewer interface’s default colors have been inverted using

MetagenomeScope’s łInvert all color settingsž option.

In the case that the user selects a contig that starts an unam-

biguous path, MetagenomeScope automatically pursues the path

forward as far as possible until a branch is reached. This łautofin-

ishingž functionality drastically reduces the amount of user effort

involved in resolving a path, only requiring the user to provide

input at branches in the graph rather than at every contig in a path.

We note that Bandage supports similar functionality for selecting

and exporting paths of contigs; however, it offers little visual guid-

ance during the path construction process regarding the contigs

that are łavailablež to extend a path. Furthermore, Bandage does

UMDCS, Spring 2018, College Park, Maryland USA M. Fedarko et al.

not support autofinishing, and requires the user to interact with

every contig added to a path.

4 IMPLEMENTATION

MetagenomeScope is composed of two software components: a

command-line preprocessing script that performs layout and struc-

tural pattern detection on an input assembly graph, producing a

SQLite database file, and a client-side web łviewer interfacež that

can visualize these database files.

This modular design provides an advantage in the analysis of

large assembly graphs. Database files generated by the preprocess-

ing script can be visualized an arbitrary number of times, without

repeatedly incurring the computational costs of layout and struc-

tural pattern detection. Additionally, the viewer interface and the

database files output by the preprocessing script can be hosted on

a server, allowing end users to view assembly graphs using only a

web browser.

4.1 Preprocessing Script: Laying Out the Graph

MetagenomeScope’s preprocessing script highlights and groups to-

gether contigs contained in basic structural patterns in the assembly

graph, and performs layout on the graph’s connected components

using Graphviz’ [6] dot tool for hierarchical layout. Many hierarchi-

cal layout algorithms, including dot, use heuristics to circumvent

the inherent intractability of Sugiyama-style hierarchical graph

drawing [4]. Although these layout approaches work relatively

quickly for most small graphs, on large graphs they can take a

longer amount of time compared to other layout algorithms such as

the force-directed algorithm employed by Bandage [16]. We posit,

however, that the relative quality of hierarchical layouts in many

cases justifies this increase in computation time.

The preprocessing script is primarily written in Python, with

some C++ code that interfaces with the Open Graph Drawing

Framework [3] to generate SPQR trees. The script supports Linux

and macOS systems.

4.2 Viewer Interface: Supporting Interaction
with the Graph

MetagenomeScope’s web viewer interface uses Cytoscape.js [5]

to visualize assembly graphs described by database files gener-

ated by its preprocessing script. Database files are processed on

the client side using sql.js [9]. The entirely client-side nature of

MetagenomeScope’s viewer interface reduces the need for any in-

volved server-side operations, moving the onus of computation

to the user’s web browser. This has the effect of mitigating the

costs of actually hosting an instance of MetagenomeScope’s viewer

interface, making collaborative visualization of assembly graphs

easier. This also allows MetagenomeScope’s viewer interface to be

used without being hosted on a serverÐif it is downloaded to a

device, it can be accessed as a local file from a web browser on that

device.

In addition to standard controls for interactive graph manipula-

tion such as panning, zooming, and selection, the viewer interface

includes a variety of novel controls to support exploratory analysis

of the assembly graph; many of these are discussed in section 3.

The viewer interface supports modern internet browsers on

ordinary computers and on smartphones/tablets.

4.3 Source Code and License

MetagenomeScope’s source code is released under the GNUGeneral

Public License (GPL), version 3. The source code is publicly available

on GitHub at https://github.com/marbl/MetagenomeScope.

5 CONCLUSION

We have presented MetagenomeScope, a tool for visualizing and

interacting with assembly graphs. MetagenomeScope relies on a

hierarchical layout algorithm in order to visualize graphs in a way

that captures the linear structure of genomic graphs and highlights

graph patterns that may represent biological features.

MetagenomeScope also providesmany novel features to augment

exploratory analysis of these graphs. Structural pattern collapsing,

scaffold visualization, manual finishing controls, and SPQR tree

decompositionÐto name a few such toolsÐprovide functionality not

currently available in other tools for visualizing genome assembly

graphs.

MetagenomeScope is, however, just a first step towards better

interactive visualizations of assembly graphs. The ability to de-

tect a richer set of graph patterns and to hierarchically organize

them would allow for a multi-level representation able to simul-

taneously capture the large-scale structure of the graph and drill

down to explore interesting motifs. Better layout algorithms de-

veloped specifically for handling the unique characteristics of the

assembly graphs could reduce the computational cost of layout

operations, perhaps even allowing their execution directly in the

browser. Further performance improvements could be obtained

through parallelization or through the use of special hardware such

as GPU processors.

Metagenomic assembly is an inherently difficult process. Al-

though it is likely to remain a hard problem for quite some time, we

believe that visualization tools like MetagenomeScope can provide

a means of simplifying the processÐand a means of helping users

explore their dataÐin the meantime.

ACKNOWLEDGMENTS

The authors were supported in part by the NIH, grant R01-AI-

100947, the NSF, grant IIS-1117247, and the Navy Research Labora-

tories, cooperative agreement N00173162C001, all to MP.

Travel by MF to the 25th International Symposium on Graph

Drawing and Network Visualization to present on this work was

supported by the Rita Colwell Travel Fellowship.

REFERENCES
[1] G. Di Battista and R. Tamassia. 1989. Incremental planarity testing. In 30th Annual

Symposium on Foundations of Computer Science. 436ś441. https://doi.org/10.1109/
SFCS.1989.63515

[2] Sébastien Boisvert, François Laviolette, and Jacques Corbeil. 2010. Ray: simulta-
neous assembly of reads from a mix of high-throughput sequencing technologies.
Journal of computational biology 17, 11 (2010), 1519ś1533.

[3] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau, Karsten
Klein, and Petra Mutzel. 2014. The Open Graph Drawing Framework (OGDF).
In Handbook of Graph Drawing and Visualization, Roberto Tamassia (Ed.). CRC
Press, Chapter 17.

https://github.com/marbl/MetagenomeScope
https://doi.org/10.1109/SFCS.1989.63515
https://doi.org/10.1109/SFCS.1989.63515

Hierarchically Visualizing Metagenome Assembly Graphs with MetagenomeScope UMDCS, Spring 2018, College Park, Maryland USA

[4] Markus Eiglsperger, Martin Siebenhaller, and Michael Kaufmann. 2004. An
efficient implementation of Sugiyama’s algorithm for layered graph drawing. In
International Symposium on Graph Drawing. Springer, 155ś166.

[5] Max Franz, Christian T. Lopes, Gerardo Huck, Yue Dong, Onur Sumer, and Gary D.
Bader. 2016. Cytoscape.js: a graph theory library for visualisation and analysis.
Bioinformatics 32, 2 (2016), 309. https://doi.org/10.1093/bioinformatics/btv557

[6] Emden RGansner and Stephen CNorth. 2000. An open graph visualization system
and its applications to software engineering. Software: Practice and Experience
30, 11 (2000), 1203ś1233.

[7] Elenie Godzaridis, Sebastien Boisvert, Fangfang Xia, Mikhail Kandel, Steve
Behling, Bill Long, Carlos P Sosa, François Laviolette, and Jacques Corbeil. 2013.
Human Analysts at Superhuman Scales: What Has Friendly Software To Do? Big
data 1, 4 (2013), 227ś236.

[8] Sergey Koren, Todd J. Treangen, and Mihai Pop. 2011. Bambus 2: scaffold-
ing metagenomes. Bioinformatics 27, 21 (2011), 2964. https://doi.org/10.1093/
bioinformatics/btr520

[9] Ophir Lojkine, Alon Zakai, et al. 2017. sql.js. http://github.com/kripken/sql.js.
(2017).

[10] Jason R. Miller, Sergey Koren, and Granger Sutton. 2010. Assembly algorithms
for next-generation sequencing data. Genomics 95, 6 (2010), 315ś327. https:
//doi.org/10.1016/j.ygeno.2010.03.001

[11] Gene Myers, Mihai Pop, Knut Reinert, and TandyWarnow. 2017. Next Generation
Sequencing (Dagstuhl Seminar 16351). Dagstuhl Reports 6, 8 (2017), 91ś130.
https://doi.org/10.4230/DagRep.6.8.91

[12] C. B. Nielsen, S. D. Jackman, I. Birol, and S. J. M. Jones. 2009. ABySS-Explorer:
Visualizing Genome Sequence Assemblies. IEEE Transactions on Visualization
and Computer Graphics 15, 6 (Nov 2009), 881ś888. https://doi.org/10.1109/TVCG.
2009.116

[13] Jurgen F. Nijkamp, Mihai Pop, Marcel J. T. Reinders, and Dick de Ridder. 2013.
Exploring variation-aware contig graphs for (comparative) metagenomics using
MaryGold. Bioinformatics 29, 22 (2013), 2826.

[14] Adam M. Phillippy, Michael C. Schatz, and Mihai Pop. 2008. Genome assembly
forensics: finding the elusive mis-assembly. Genome Biology 9, 3 (2008), R55.
https://doi.org/10.1186/gb-2008-9-3-r55

[15] Jared T Simpson, Kim Wong, Shaun D Jackman, Jacqueline E Schein, Steven JM
Jones, and Inanç Birol. 2009. ABySS: a parallel assembler for short read sequence
data. Genome research 19, 6 (2009), 1117ś1123.

[16] Ryan R. Wick, Mark B. Schultz, Justin Zobel, and Kathryn E. Holt. 2015. Bandage:
interactive visualization of de novo genome assemblies. Bioinformatics 31, 20
(2015), 3350. https://doi.org/10.1093/bioinformatics/btv383

[17] Daniel R Zerbino and Ewan Birney. 2008. Velvet: algorithms for de novo short
read assembly using de Bruijn graphs. Genome research 18, 5 (2008), 821ś829.

[18] Qi Zhou, Shaonan Li, Xiaopeng Li, Wei Wang, and Zhiguo Wang. 2006. Detection
of outliers and establishment of targets in external quality assessment programs.
Clinica chimica acta 372, 1-2 (2006), 94ś97.

https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.1093/bioinformatics/btr520
https://doi.org/10.1093/bioinformatics/btr520
http://github.com/kripken/sql.js
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.4230/DagRep.6.8.91
https://doi.org/10.1109/TVCG.2009.116
https://doi.org/10.1109/TVCG.2009.116
https://doi.org/10.1186/gb-2008-9-3-r55
https://doi.org/10.1093/bioinformatics/btv383

	Abstract
	1 Introduction
	2 Related Work
	2.1 Layout Differences
	2.2 Application Environments

	3 Methods
	3.1 Hierarchical graph layout
	3.2 Detection and Highlighting of Structural Patterns
	3.3 SPQR Tree Decomposition
	3.4 Scaffold Visualization
	3.5 Finishing Tools

	4 Implementation
	4.1 Preprocessing Script: Laying Out the Graph
	4.2 Viewer Interface: Supporting Interaction with the Graph
	4.3 Source Code and License

	5 Conclusion
	Acknowledgments
	References

