
Learning in a Continuous-Valued Attractor Network

Baram Sosis
Dept. of Computer Science

University of Maryland
College Park, Maryland USA

bsosis272@gmail.com

Garrett E. Katz
Dept. of Electrical Engineering

and Computer Science
Syracuse University

Syracuse, New York USA

gkatz01@syr.edu

James A. Reggia
Dept. of Computer Science and UMIACS

University of Maryland
College Park, Maryland USA

reggia@cs.umd.edu

Abstract—Learning a set of patterns in a content-addressable
memory is an important aspect of many neurocomputational
systems. Historically, this has often been done using Hebbian
learning with attractor neural networks such as the standard
discrete-valued Hopfield model. However, such systems are cur-
rently severely limited in terms of their memory capacity: as
an increasing number of patterns are stored as fixed points,
spurious attractors (“false memories”) are increasingly created
and compromise the network’s functionality. Here we adopt a
new method for identifying the fixed points (both stored and
false memory patterns) learned by attractor networks in general,
applying it to the special case of a continuous-valued analogue of
the standard Hopfield model. We use computational experiments
to show that this continuous-valued model functions as a content-
addressable memory, characterizing its ability to learn training
examples effectively and to store them at energy minima having
substantial basins of attraction. We find that the new fixed point
locator method not only identifies learned memories, but also
many of the spurious attractors that occur. These results are
a step towards systematically characterizing what is learned by
attractor networks and may lead to more effective learning by
allowing the use of techniques such as selective application of
anti-Hebbian unlearning of spurious memories.

Index Terms—Hebbian learning, attractor neural networks,
directional fibers

I. INTRODUCTION

Neural networks have become an increasingly prominent

part of machine learning over the last decade, led by sub-

stantial advances in the successful application of a variety

of deep learning methods for pattern classification, natural

language processing, game playing, and other tasks [1]. Deep

convolutional networks based on feedforward architectures

provide a good example of this, as manifested by their major

successes in image processing competitions. Deep learning is

also interesting in the sense that it discovers useful hierar-

chical application-specific features/concepts from its training

data [2]. However, there are some substantial limitations of

contemporary deep learning methods. For example, their most

prominent successes have come from supervised learning

(gradient descent methods based on error backpropagation)

requiring numerous training epochs using extremely large data

sets. The need for large amounts of data is problematic if

one only has access to very limited data and/or if one wants

to learn very rapidly from just a few examples, or even a

single example. Such considerations motivate the exploration

of alternative neural network approaches to machine learning

systems, as we do here.

One potential alternative neurocomputational approach is

the use of attractor neural networks that are based on Hebbian

learning, not error-driven gradient descent, via a single pass

through the data. Attractor networks in general are highly

recurrent architectures that can advantageously be viewed as

dynamical systems and can thus be characterized by their

attractor states. Here we restrict our attention to attractor

networks with symmetric weights that can serve as content

addressable memories. A simple and well-known example of

such models is the discrete-valued Hopfield model that is

often used in machine learning textbooks as an illustration,

e.g., [3]–[5]. Discrete Hopfield networks have symmetric

weight matrices and associated energy functions (Lyapanuv

functions, Hamiltonians) that, in the context of asynchronous

node updating, ensure that the network evolves to a fixed point

activation state when started in any arbitrary state. One-step

Hebbian learning (i.e., learning a specific memory pattern after

seeing it only once) tends to store given training data as fixed

point attractors in such a network, which can then be retrieved

by later initializing the network to similar partial or noisy

activation states and allowing the network to evolve to the

nearest attractor state (presumably a learned memory pattern).

Unlike many other recurrent neural network learning methods

that are based on gradient descent (e.g., LSTM), learning is

extremely fast because it is both simple and involves only a

single pass through the data (“one step”).

Hopfield networks continue to be used in applications today

and many variants/extensions have been and continue to be

investigated, e.g., [6], [7]. For example, an extended version

of basic Hopfield networks was used recently in a cognitive

neural architecture that learned to play a simple card game [8].

The Hopfield networks that were components of this model

served both as a working memory that learned environmental

states, and as a procedural memory that learned simple action

sequences to use during problem solving. However, content

addressable memories like this also face significant limita-

tions, one of which is their limited memory capacity. Only

a relatively small number of memory patterns (training data)

can be learned as fixed points and then retrieved reliably, in

large measure due to the occurrence of spurious memories

(spurious fixed point attractor states). These “false memo-

278

2018 17th IEEE International Conference on Machine Learning and Applications

978-1-5386-6805-4/18/$31.00 ©2018 IEEE
DOI 10.1109/ICMLA.2018.00048

ries” arise due to interference that occurs between weight

changes being made in storing different target patterns in

memory during learning. Accordingly, a critical question is

whether one can identify and characterize a network’s learned

memories, both intended and spurious. This would not only

allow us to better understand what a network has learned, but

even more importantly, to also study methods for potentially

selectively eliminating the spurious memories stored during

learning (e.g., anti-Hebbian unlearning). Substantial past work

has acknowledged the importance of identifying fixed points of

neural networks in terms of understanding the mechanisms that

underlie their performance (e.g., [9]). Typically, in examining

this issue, most past work has located stored attractor states in

a trained network by initializing its activity state to a random

sample of activity patterns (referred to as “random starts” in

the following) and collecting the attractor states that were

subsequently reached by the network. It is currently unclear

how effective this approach is in general.

Recently a new method was introduced for locating fixed

points of recurrent neural networks via the use of directional

fibers [10], [11]. This approach systematically follows a path

through the activation space of arbitrary recurrent neural

networks that passes through many of the network’s fixed

point states. Here we examine the hypothesis that this method

provides an effective alternative to random starts in locating

the learned attractor states in Hopfield-like content addressable

memories. Our method requires us to convert the original

discrete state Hopfield model into a continuous version, and

we show how to do that here. We then ask and answer several

questions. Does the continuous version of the model function

reliably as a content addressable memory? Can searching

the trained model’s activity space effectively locate its fixed

points? If so, how many of these fixed points correspond to

learned memories versus spurious memories, and how large are

the basins of attraction in either case? How does the network’s

energy vary as a directional fiber is traversed? The results that

we present below begin to answer these questions.

II. METHODS

The update equation for the original discrete Hopfield model

[3]–[5] is given by:

vi(t+ 1) = sgn(Ai(t)) (1)

where

Ai(t) =
N∑
j=1

wijvj(t), (2)

vi(t) is the i-th element of an N -dimensional state vector

at time t, and wij is the i, j-th element of an N -by-N
weight matrix. (We will typically omit the t unless needed

for clarification.) It can also be expressed in a non-standard

way as follows:

Δvi = sgn(Ai)− vi (3)

The weight matrix is calculated using the following Hebbian

learning rule:

wij =

{
0 i = j
1
N

∑d
k=1 x

k
i x

k
j otherwise

(4)

where xk
i is the i-th entry of the k-th training data vector (out

of d training vectors), drawn from {−1, 1}N .

We consider here a continuous-valued attractor network as

an analogue to the standard Hopfield network. The motivation

behind the development of this model is to create a system

analogous to Hopfield networks that uses a differentiable

update rule so that the directional fiber-based solver and other

solvers requiring differentiable update rules can be applied to

it. We employed a model consisting of a set of fully connected

nodes like the standard Hopfield network. This model uses the

discrete-time update equation

Δvi = tanh(Ai)− vi (5)

where Ai is modified to incorporate a gain term γ:

Ai = γ
N∑
j=1

wijvj (6)

We chose this update rule as a direct analogue to (3). The

weight matrix for this model is generated in the same way

as that of the Hopfield model, using (4). Unlike those of

the Hopfield model, the fixed points of the continuous-valued

model do not lie at the corners of the unit hypercube due to

the contractive effects of the tanh function. To accommodate

this, we take their entry-wise sign when comparing them to

fixed points of the standard Hopfield model. In addition, gain

values larger than 1 are typically needed to ensure the model

has a significant number of nontrivial (i.e. besides the zero

vector) fixed points.

The update equation for the continuous-valued model can

be stated alternatively as

vi(t+ 1) = fi(v(t)) (7)

where

fi(v(t)) = tanh(Ai(t)). (8)

For convenience we will also occasionally make use of the

following function:

gi(u,v) = γ
N∑
j=1

wijuivj (9)

The continuous-valued model can be updated synchronously

(by applying (5) to all vi simultaneously) or asynchronously

(by applying it to each vi in turn). Our analysis of the asyn-

chronous update method only dealt with sequential updating

in a fixed order (i.e. entries are updated in the fixed order

v1, v2, . . . , vN), but in principle asynchronous updating could

use a randomized update order.

279

Both update methods have Lyapunov functions, in the

synchronous case given by

V (v(t)) =

N∑
i=1

[gi(v(t+ 1),v(t))

− ln(cosh(Ai(t)))

− ln(cosh(Ai(t+ 1)))] (10)

and in the asynchronous case (assuming a fixed update order

as described above) given by

V (v) =

N∑
i=1

[0.5 ln(1− v2i)

+ vi arctanh(vi)

− 0.5gi(v,v)] (11)

which are special cases of the results in [12]. See Appendices

A and B for derivations. We experimentally verified that these

functions are monotonically decreasing along a random sample

of activation trajectories.

The directional fiber-based solver requires both the update

equation (7) as well as its Jacobian in order to operate on the

continuous-valued model. The Jacobian is an N -by-N matrix

where the i, j-th entry is given by ∂fi/∂vj ; in our case it

differs depending on which update method is used. It is given

by
∂fi
∂vj

= γwij sech
2(Ai) (12)

in the synchronous case, as can be seen by differentiating (8).

To describe the asynchronous case, let vj(t+i/N) indicate the

value of vj after updating the first i entries of v(t). Then the

fixed-order asynchronous updating procedure can be written

as follows:

vj

(
t+

i

N

)
=

{
fj(v(t+

i−1
N)) if i = j

vj(t+
i−1
N) otherwise

(13)

Partial derivatives with respect to the previous time-step can

then be computed using the recursive formula:

∂vj(t+
i
N)

∂vk(t)
=

N∑
l=1

∂vj(t+
i
N)

∂vl(t+
i−1
N)

∂vl(t+
i−1
N)

∂vk(t)
(14)

where

∂vj(t+
i
N)

∂vk(t+
i−1
N)

=

{
γwjk sech

2(Aj(t+
i−1
N)) if i = j

δjk otherwise
(15)

and δjk is the Kronecker delta. Since ∂fi/∂vj is equivalent to

∂vi(t+1)/∂vj(t) = ∂vi(t+N/N)/∂vj(t) using the notation

for asynchronous updating, the Jacobian is described by:

∂vj(t+ 1)

∂vk(t)
=

N∑
l=1

∂vj(t+
N
N)

∂vl(t+
N−1
N)

∂vl(t+
N−1
N)

∂vk(t)
(16)

which can be computed recursively using (14) and (15). These

Jacobians can be used to determine whether a fixed point is

stable: a fixed point is stable when the eigenvalues of the

Jacobian at that point all have magnitude less than 1.

In the following section we describe the experiments we

conducted to investigate the properties of this model.1 We

verified that it functions as a content-addressable memory by

perturbing learned memories, running the network to conver-

gence, and measuring the distance between the result and the

original learned memories. We then quantified the performance

of the directional fiber-based solver on this model as a function

of the gain parameter, and compared it to the baseline solver

using random starts described in [10]. Fixed points were

classified on the basis of stability, whether they corresponded

to learned memories, and whether they were fixed points of the

original discrete-valued Hopfield network trained on the same

data. Finally, we investigated how the energy varies along a

directional fiber and between fixed points.

III. RESULTS

A. Overview

The experiments below typically used 100-unit networks

with γ = 10 and 3 training vectors (randomly drawn from

{−1, 1}N) unless noted otherwise. These experiments all

used synchronous updating; for brevity we omit results using

asynchronous updating because they do not differ significantly

from the results reported here.

B. Content-Addressability

In order to verify that the continuous-valued model can

serve as a content-addressable memory, we conducted several

experiments measuring the model’s ability to retrieve memo-

ries stored in it using Hebbian learning.

Fig. 1 shows the results of initializing a network (100 units,

γ = 10, and a variable number of random training vectors)

at a learned memory with a variable number of the entries

(indicated along the abscissa) randomly negated. We measured

the Hamming distance (the number of bits that differ between

two binary strings) between the learned memory and the result

after running the network to convergence in order to estimate

the size of the basins of attraction in the network. Each data

point represents an average over 50 different networks, over

all memories learned by that network, and over 50 random

perturbations of each memory. Networks with 10 or fewer

learned memories can function with minimal error even when

20 entries are flipped. The learned memories are thus typically

stable fixed points with wide basins of attraction under this

model.

Like the original Hopfield model, this model has spurious

fixed points. However, fixed points that do not correspond

directly to the learned memories have much smaller basins

of attraction. In Fig. 2 we characterize the individual fixed

points of a particular network (100 units, γ = 10, and 3

random training vectors; the fixed points were found using the

directional fiber-based solver). The network was initialized at

1Code for reproducing the experiments described here is freely available at
https://github.com/bsosis/cont-hopnet.

280

0 10 20 30 40 50

Hamming distance from stored memory before run

0

10

20

30

40

50

H
a
m
m
in
g
d
is
ta
n
c
e
fr
o
m

s
to
re
d
m
e
m
o
ry

a
ft
e
r
ru
n 1 stored memory

5 stored memories

10 stored memories

15 stored memories

20 stored memories

Fig. 1. Average distances from learned memories after networks are perturbed
from those memories and run to convergence. Error bars show one standard
deviation.

each fixed point with some number of the entries (indicated

along the abscissa) randomly negated. We then measured the

Hamming distance between the fixed point and the result

after running the network to convergence. Each data point

represents an average of 100 random perturbations of the fixed

point.

We classified the fixed points found as spurious or not

by checking whether the entry-wise sign of a given fixed

point matched one of the learned training vectors. (Note that

like in the original discrete-valued Hopfield model, every

fixed point of the continuous-valued model besides the zero

vector has a complementary fixed point with every entry

negated. The complements of learned training vectors are

marked here as spurious.) This network has many unstable

spurious fixed points (dashed gray lines), and no unstable

fixed points matching any of the learned vectors. It also has

several stable spurious fixed points (solid gray lines), but

the basins of attraction of these points seem to be relatively

small: the network no longer converges back to the fixed

point when around 10 entries are flipped. In contrast, stable

fixed points corresponding to learned memories (black lines)

or the complements of memories (marked as spurious but with

curves interwoven with those of the learned memories) can be

accurately retrieved even when 30 entries are flipped.

C. Applying the Solvers

After verifying that the continuous-valued model serves as

a content-addressable memory, we then investigated how well

the directional fiber-based solver and the baseline random-

starts solver can find the fixed points of the model. We

classified the fixed points found in three ways: whether they

are stable or unstable, whether they are spurious or not, and

whether they match a fixed point of the equivalent Hopfield

model (that is, the discrete-valued Hopfield model using the

same weight matrix). Stable and unstable fixed points were

identified by examining the Jacobian. Spurious fixed points

and points corresponding to learned training vectors were

0 10 20 30 40 50

Hamming distance from fixed point before run

0

10

20

30

40

50

H
a
m
m
in
g
d
is
ta
n
c
e
fr
o
m

fi
x
e
d
p
o
in
t
a
ft
e
r
ru
n

Unstable, spurious

Stable, spurious

Stable, stored memory

Fig. 2. Distances from fixed points after a particular network is perturbed
from those fixed points and run to convergence.

identified by comparing the entry-wise sign of the fixed points

to the training vectors. Finally, fixed points were classified as

matching a fixed point of the equivalent Hopfield model if their

entry-wise sign was a fixed point of the equivalent discrete-

valued model.

Results are shown in Fig. 3. Experiments were run using

100-unit networks with a variable gain and 3 training vectors;

results were averaged over 25 different networks. Figs. 3a and

3b show the results for the directional fiber-based model, while

Figs. 3c and 3d show the results for the baseline solver. Figs.

3a and 3c classify the fixed points on the basis of stability

and whether they correspond to learned training vectors or

are spurious; Figs. 3b and 3d classify them on the basis of

stability and whether they are fixed points under the equivalent

discrete-valued Hopfield model. Unlike the directional fiber-

based solver, which terminates once it has traversed a fiber

long enough that no more fixed points will be found along it

[10], the baseline solver can be run indefinitely. We therefore

timed the directional fiber-based solver and ran the baseline

solver until the same amount of time had elapsed.

We found that the gain parameter has a large impact on the

number of fixed points found by the directional fiber-based

solver, with a peak at around γ = 10. When a gain of 10

is used the directional fiber-based solver often finds all three

learned training vectors (Fig. 3a). In contrast, the baseline

solver is relatively insensitive to the gain, and seems to find

all three training vectors more consistently (Fig. 3c). In both

cases nearly all fixed points found match fixed points of the

equivalent Hopfield model (Figs. 3b and 3d). This lends further

justification to the use of the continuous-valued model as an

analogue for the Hopfield model.

We also attempted to estimate what fraction of all fixed

points were found by the directional fiber-based solver in a

particular run. To do this, we repeatedly ran the solver with

different directional fibers on the same network (100 units,

γ = 10, and either 3 or 10 random training data vectors); after

each run we computed the union of the sets of fixed points

281

0 5 10 15 20 25 30 35

Gain

0

5

10

15

20

25

30

35

40

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts

Stable, stored

Unstable, stored

Stable, spurious

Unstable, spurious

(a) Directional fiber-based solver

0 5 10 15 20 25 30 35

Gain

0

5

10

15

20

25

30

35

40

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts

Stable, Hopnet fp

Unstable, Hopnet fp

Stable, not a Hopnet fp

Unstable, not a Hopnet fp

(b) Directional fiber-based solver

0 5 10 15 20 25 30 35

Gain

0

5

10

15

20

25

30

35

40

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts Stable, stored

Unstable, stored

Stable, spurious

Unstable, spurious

(c) Baseline solver

0 5 10 15 20 25 30 35

Gain

0

5

10

15

20

25

30

35

40

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts Stable, Hopnet fp

Unstable, Hopnet fp

Stable, not a Hopnet fp

Unstable, not a Hopnet fp

(d) Baseline solver

Fig. 3. Number of fixed points found by (a), (b) the directional fiber-based solver and (c), (d) the baseline solver in the continuous-valued model with variable
gain, classified on the basis of stability and whether the fixed points (a), (c) match learned training vectors and (b), (d) match fixed points under the equivalent
discrete-valued Hopfield model. “Hopfield network fixed point” is abbreviated “Hopnet fp” in the legend. Error bars show one standard deviation.

found up to that point. Fig. 4 shows the results averaged over

10 different networks. While the directional fiber-based solver

is able to find nearly all fixed points with only one run when

there are relatively few fixed points (as in Fig. 4a), it needs

many runs when there are more fixed points, such as when 10

training vectors are used (as in Fig. 4b).

D. Energy

Finally, we ran several experiments to understand how the

energy function varies as the directional fiber-based solver

traverses a fiber. Fig. 5 shows the energy along a particular

fiber traversed by the solver; we used a 100-unit network with

γ = 10 and 3 training vectors. Fixed points are marked with

dashed lines; spurious, stable fixed points are marked with

squares while non-spurious, stable fixed points are marked

with black circles. Since the fiber does not follow the model’s

update equation, the energy is not necessarily decreasing along

it and therefore local minima do not necessarily imply fixed

points. However, every fixed point found by the directional

fiber-based solver is a critical point of the energy function,

with stable fixed points lying in local energy minima. Unstable

fixed points appear to lie in energy maxima but further work

is needed to rule out the possibility of saddle points.

Fig. 6 shows the fixed points of 25 different networks (100

units, γ = 10, and 3 learned training vectors; the appearance

of fewer than 25 networks is due to overlap) sorted by energy.

Stable fixed points typically have a lower energy than unstable

fixed points, and stable fixed points corresponding to learned

memories (or their complements, since every fixed point

besides the zero vector has a complementary fixed point with

every entry negated) nearly always have the lowest energy.

IV. DISCUSSION

We have shown that our continuous-valued model can

effectively serve as a content-addressable memory, and that

the baseline solver and often the directional fiber-based solver

can effectively find its fixed points. Moreover, nearly all of

these learned attractor states lie in the same orthant as a

fixed point under the original discrete-valued Hopfield model,

allowing its use as an analogue for the Hopfield model. This

282

2 4 6 8 10

Number of solver runs

0

10

20

30

40

50

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts

Stable

Unstable

Total

(a) 3 training vectors

2 4 6 8 10

Number of solver runs

0

50

100

150

200

250

300

N
u
m
b
e
r
o
f
fi
x
e
d
p
o
in
ts

Stable

Unstable

Total

(b) 10 training vectors

Fig. 4. Number of unique fixed points found by the directional fiber-based solver when run on the same network with different directional fibers. The networks
were trained on either (a) 3 or (b) 10 learned memories. Note the different vertical scales. Error bars show one standard deviation.

Fig. 5. Plot of the energy function along the fiber followed by a particular
run of the directional fiber-based solver. Dashed vertical lines indicate fixed
points, white squares indicate spurious stable fixed points, and black circles
indicate non-spurious stable fixed points (learned memories).

in turn allows the fixed points of Hopfield networks to be

studied by applying these solvers (or other solvers that require

a differentiable update rule) to the equivalent continuous-

valued model. This gives researchers investigating the learned

memories in attractor networks a significant new tool in their

toolbox. The energy experiments presented above are one

example of the type of studies this model enables.

It appears from our experiments (Fig. 3) that the baseline

solver outperforms the directional fiber-based solver on this

model when the gain used is high (above 15, gain values

that are generally not used in practice). This runs contrary to

[10], in which the authors show that the directional fiber-based

solver often outperforms the baseline solver. One potential

difference that may explain the discrepancy is the learning

procedures used. While we used Hebbian learning via (4),

in [10] the authors used an asymmetric matrix with random

weights. Perhaps the most significant consequence of this is

that their procedure results in models with far more fixed

points than those considered here. If the number of fixed

points has a large impact on the relative performance of

the two solvers, then it may be best to view the algorithms

as complementary, with each performing best on different

problem sizes and types. More research is needed to investigate

this possibility, but elucidating the relationship between the

solvers may help further our understanding of the memory

capacity of attractor networks so they can be used more

effectively as learning systems.

In summary, our results reported here are one step towards

characterizing what is learned by attractor networks. In terms

of future work, we conjecture that with increased memory load

(increasing numbers of specific patterns to learn) the fiber-

based solver will increasingly find attractors that are missed

by the baseline solver, just as was observed with other classes

of neural networks. A key next step will be to use such

information to improve the learning ability of our continuous-

valued model by selectively erasing learned spurious attractor

states using methods such as anti-Hebbian unlearning.

APPENDIX A

DERIVATION OF (10)

In [12] the authors give the general form of the Lyapunov

function obeyed by a continuous-valued, discrete time dynam-

ical system with a synchronous update procedure of the form:

vi(t+ 1) = h (Bi) (17)

where

Bi =
N∑
j=1

wijvj(t)− bi (18)

under the constraint that wij = wji; in our case bi = 0 for all

i. Also note that since we use γwij in every case where wij

is used, γ can be incorporated into Bi and we can simply use

283

0 6 12 18 24 30 36 42 48

Sorted Fixed points

−800

−600

−400

−200

0
E
n
e
rg
y

Stable stored

Stable spurious

Unstable stored

Unstable spurious

(a)

0 6

Sorted Fixed points

−840

−820

−800

−780

−760

−740

−720

−700

E
n
e
rg
y

Stable stored

Stable spurious

Unstable stored

Unstable spurious

(b)

Fig. 6. The fixed points found by the directional fiber-based solver on several networks, sorted by energy. Stable fixed points and fixed points corresponding
to learned memories are marked on the graph. (b) shows an expanded view of the lower left corner of (a).

Ai as defined in (6) instead. Using our notation, the general

form of the Lyapunov function is as follows:

V (v(t)) =
N∑
i=1

[gi(v(t),v(t− 1))

−
∫ Ai(t−1)

c

h(v) dv

−
∫ Ai(t)

c

h(v) dv] (19)

where c is an arbitrary constant in an interval over which f
is strictly increasing. In our case h(v) = tanh(v) with an

antiderivative ln(cosh(v)), so by picking c = 0 and observing

that ln(cosh(0)) = 0, we have the following result:

V (v(t)) =

N∑
i=1

[gi(v(t),v(t− 1))

− ln(cosh(Ai(t− 1)))

− ln(cosh(Ai(t)))] (20)

Since v(t − 1) is not accessible on the first iteration of the

model, we replaced the v(t) and v(t− 1) terms in (20) with

v(t + 1) and v(t), respectively, giving (10). This is still a

Lyapunov function because V (v(t)) is non-increasing for any

t, regardless of how t is shifted.

APPENDIX B

DERIVATION OF (11)

In [12] the authors give the general form of the Lyapunov

function obeyed by a continuous-valued, discrete time dynam-

ical system operating under an asynchronous update procedure

with the same constraints as in Appendix A, and the additional

constraint that W has a nonnegative diagonal. Using our

notation, the general form is as follows:

V (v) = −1

2

N∑
i=1

[gi(v,v) + bivi

+

∫ vi

0

h−1(v) dv] (21)

In our case bi = 0 and h−1(v) = arctanh(v) with an

antiderivative 0.5 ln(1 − v2) + v arctanh(v); since this an-

tiderivative is 0 when evaluated at 0, we get the result in (11).

ACKNOWLEDGMENT

This work was supported in part by DARPA Award

HR00111890044.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge:
MIT press, 2016, vol. 1.

[3] S. S. Haykin, Neural networks and learning machines. Upper Saddle
River, NJ: Pearson, 2009.

[4] S. Marsland, Machine learning: an algorithmic perspective. CRC press,
2015.

[5] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[6] C. Gorman, A. Robins, and A. Knott, “Hopfield networks as a model
of prototype-based category learning: A method to distinguish trained,
spurious, and prototypical attractors,” Neural Networks, vol. 91, pp. 76–
84, 2017.

[7] D. Nowicki and H. Siegelmann, “Flexible kernel memory,”
PLOS ONE, vol. 5, pp. 1–18, 06 2010. [Online]. Available:
https://doi.org/10.1371/journal.pone.0010955

[8] J. Sylvester and J. Reggia, “Engineering neural systems for high-level
problem solving,” Neural Networks, vol. 79, pp. 37–52, 2016.

[9] D. Sussillo and O. Barak, “Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks,” Neural Com-
putation, vol. 25, no. 3, pp. 626–649, 2013.

[10] G. E. Katz and J. A. Reggia, “Using directional fibers to locate fixed
points of recurrent neural networks,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 9, pp. 3636–46, 2018.
[Online]. Available: https://doi.org/10.1109/TNNLS.2017.2733544

[11] ——, “Applications of directional fibers to fixed point location and
non-convex optimization,” in Proc. 16th Annual Conf. on Scientific
Computing. Las Vegas: CSREA Press, August 2018, pp. 140–146.

[12] F. Fogelman Soulié, C. Mejia, E. Goles, and S. Martinez, “Energy
functions in neural networks with continuous local functions,” Complex
Systems, vol. 3, pp. 269–293, 1989.

284

