
A domain for the evaluation of RAEplan

James Mason

Abstract

The planning community has recently seen a surge in the development of integrated
planning-and-acting systems. One system is RAEplan [10], which plans over oper-
ational models, which describe how to perform an action, rather than descriptive
models, which describe what an action does. RAEplan is the first-known system
to plan on operational models, which can be represented with a general-purpose
programming language such as Python. RAEplan’s development presents a new
problem: the need for domains to test the effectiveness of operational model-based
systems. In this paper we present the Order Fulfillment (OF) domain, a domain
that requires online planning over concurrent tasks in a non-deterministic environ-
ment with robot collaboration.

1 Introduction

AI planning has traditionally used descriptive models for planning that describe what
an action does and what state an actor will transition to, rather than how that action
is to be performed [4]. As the planning community shifts its focus to the integration
of planning and acting, descriptive models are often inadequate for modeling action
execution, struggling to represent continuous actions and unexpected changes to the
world state which may occur during execution [10]. This prompted the development
of RAEplan [10], a planner that plans over operational models, which describe how
an action is to be executed.

The acting side of RAEplan is RAE [4], which is inspired by the PRS system [7].
RAE uses a hierarchal, task-based language for acting. It supports typical program-
ming language features such as loops, variables, and functions. Our implementation
of RAE supports full Python code. RAE can arbitrarily choose from different options
to accomplish tasks while reacting to dynamic events from the environment.

1

In RAE, refinement methods describe alternative approaches to accomplishing the
same task. The refinement methods may contain arbitrary code, and may contain
recursive subtasks or non-deterministic commands, which the actor can use to change
the world state. These methods and commands are manually programed.

The planning side of the system, RAEplan, plans by performing Monte Carlo
rollouts over these same refinement methods. RAEplan executes these commands
and methods in a simulated world. This simulator is domain-dependent. We allow
refinement methods to contain free variables, which RAEplan will assign based on
some constraints. Each fully assigned refinement method is called a method instance.
RAEplan looks at all or some of the method instances, and tells RAE the method
instance it should execute.

We need new domains to evaluate this new kind of planner. These domains should
be non-trivial and contain some combination of non-deterministic actions, dead ends,
concurrent tasking, robot collaboration, and environment sensing. The goal of these
testing domains is not to be realistic, but to provide a challenge to RAEplan and to
demonstrate the types of challenges it can plan over.

We initially decided to evaluate RAEplan on the Robocup Logistics League Com-
petition. After several months of effort, we were unable to make progress due to
problems we encountered with setting up and connecting to the simulation. We
instead decided to create our own domain.

We present the Order Fulfillment (OF) domain, a domain that requires online
planning over concurrent tasks in a non-deterministic environment with robot col-
laboration. We also present several variations of the domain that provide dead ends,
the need for sensing commands, and dynamic events. These variations can be mixed
and matched to display various properties as desired. We also present limitations of
RAEplan that we discovered during the creation of the domain.

This paper is structured as follows. In Section 2 we describe the OF domain and
how you can create a task to redo commands with RAE. In Section 3 we describe
several variations of OF and the problem with concurrent actions in RAEplan. In
Section 4 we describe three bugs we found with RAEplan’s implementation. In
Section 5 we discus related work. In Section 6 we give our conclusions.

2 The Order Fulfillment Domain

The Order Fulfillment (OF) domain has several robots in a shipping warehouse that
must co-operatively package incoming orders. An order contains a list of items that
a customer wants delivered. The list contains some number of object classes, with
duplicates allowed. An object of each class should be placed together in a machine,

2

which packs the objects together into a box. Only the items for a single order can be
in a machine at the same time. The task is completed when the appropriate package
is placed in the shipping doc.

It should be noted that this domain is not representative of how shipping ware-
houses work and it is not intended to be. This is a toy domain designed to be
challenging for RAEplan.

Planning is necessary in order to complete the problem efficiently. A planner
must decide which machine should be used for a particular order and which robot to
use for a given task. Further complexity is added to the domain by allowing objects
to be moved to a pallet instead of directly to a machine. This allows multiple orders
to be processed simultaneously, and requires a planner to identify which orders to
complete before others.

The OF domain is described by state variables including: robot r ∈ R, the set
of robots; object obj ∈ O, the set of objects; machine m ∈ M , the set of machines;
loc(x) = L for x ∈ R ∪ O ∪ M where L is the set of locations; and type(obj) =
objClass for obj ∈ O and objClass, the type of object. The robots can exe-
cute commands such as MoveRobot(r, loc1, loc2), Pickup(r, obj), Putdown(r, obj),
LoadMachine(r, obj,m), and UnloadMachine(r, p,m). Unlike classical planning,
these commands have durations that are modeled by random variables — another
factor that must be considered while planning.

The description of methods for the top level Order task are given below. The
task itself takes one argument, orderList, a list of the object types to be packaged.
The first method moves each object in the order and places it in the machine one by
one. The second method first stores the objects on a pallet to wait for a machine to
become available.

// f o r f r e e v a r i a b l e s m and o b j L i s t
Order Method1 (orde rL i s t , m, o b j L i s t) :

wait () // may want to wait

f o r i = 1 to l en (o r d e r L i s t) :
i f type (o b j L i s t [i]) != o r d e r L i s t [i] : Fa i l ()

// move the ob j e c t and load in machine
// f o r f r e e r in robots
task : pickupAndLoad (r , o b j L i s t [i] , m)

command : package (m, o b j e c t s)

3

// unload machine and move package to load ing doc
// f o r f r e e r in robots
task : unloadAndDeliver (r , m, package)

// f o r f r e e v a r i a b l e s m and o b j L i s t
Order Method2 (orde rL i s t , m, o b j L i s t) :

// here we move o b j e c t s to the p a l l e t
// in more compl icated implementations , we can
// move a subset o f i tems in s t ead o f a l l

f o r i = 1 to l en (o r d e r L i s t) :
i f type (o b j L i s t [i]) != o r d e r L i s t [i] : Fa i l ()

// move the ob j e c t and p lace on p a l l e t .
// f o r f r e e r in robots , p in p a l l e t s
task : moveToPallet (r , o b j L i s t [i] , p)

wait () // may want to wait

// move o b j e c t s from p a l l e t to machine
f o r each obj in o b j L i s t :

// f o r f r e e r in robots
task : pickupAndLoad (r , obj , m)

command : package (m, o b j e c t s)

// unload machine and move package to load ing doc
// f o r f r e e r in robots
task : unloadAndDeliver (r , m, package)

Commands in this domain are non-deterministic and may not perform correctly.
For example, the Pickup command may fail and have the object fall to the ground.
When commands fail, RAE will try to switch to an alternative method. This behav-
ior is often undesirable in the OF domain, where redoing the same command will
typically result in the desired outcome. To solve this, we created the Redoer task.
The Redoer task is a wrapper for a command that will try to redo the command up
to n times in the case of a failure. This addition to the domain improves the success
rate of OF problems.

4

Redoer (command , args) :
i = 0

whi le (i < n) :
s t a t i c redoID += 1
id = redoID
doCommand : command(args , id)
i f shouldRedo [id] == FALSE:

re turn SUCCESS
i += 1

return FAILURE

Since RAE will not directly return the result of a command, the result is passed
back through a state variable which relays if the command failed. Redoer can be
further modified to describe the type of failure, which can be used to stop earlier if
the command can never be completed in the current state.

3 Variations and Alternative Designs

We have considered several variations of the order fulfillment domain. Several of
these variations can be used together so that OF displays various properties. These
variations on OF have also revealed several issues with RAEplan’s implementation.

3.1 Combining the logistics domain with a smart factory
domain

When creating OF, we thought it would be best to start from a domain that is
already used in the community. The logistics domain (one version described in [5])
is a simple planning domain where actors must deliver packages to various locations.
We thought it would be interesting to combine this domain with a smart factory
domain that would package the orders. The domain could also include multiple
factories so that a planner would need to decide which factory a particular package
should be processed in.

This domain is interesting from a planning perspective because there are many
ways to perform the same task. Dynamic events such as traffic or bad weather are
natural additions to the domain. The problem with this domain is that the costs
of traveling to deliver packages are much higher than the costs of actions inside the

5

factory. This makes the choices within the factory fairly irrelevant when it comes to
the overall picture, and the domain is therefore ineffective. We decided to remove
the logistics challenges and focus on the smart factory because we want a domain
that allows RAE to change the environment instead of simply traversing it.

3.2 Concurrent actions for the same task

Time in RAE is represented as a number t ∈ N. Every top-level task, represented as a
stack, is advanced by one step as t increases. One feature of RAE is the concurrent

operator [4], which splits the method into k branches to be processed in parallel,
all of which must be resolved before the original method is resolved. This allows
multiple commands for the same method to occur in the same time step.

The concurrent operator could be useful for the Order task, allowing multiple
robots to move objects to a packaging machine simultaneously. This method can
better utilize a factory’s resources if there are more robots than orders.

While good in theory, the concurrent operator is hard to use in practice. [4]
describes the operator as “[splitting the stack] into k substacks.” This ignores the
issue of how the substacks must maintain some level of co-dependence. If each
substack has its own set of state variables, the substacks can become inconsistent
with one another. If all of the substacks share the same state variables, then you
can’t plan over each individual substack.

Due to these implementation problems, we have not implemented the concurrent
operator in our version of RAE. Since we lack the operator, this method for Order is
similarly unimplemented. Future work should be done to implement this important
feature of RAE.

3.3 Sensing Commands

RAEplan is capable of planning without full knowledge of the domain. RAE can use
sensing commands to learn information about its environment, such as if an object
is present at a location. This capacity can be demonstrated in OF by requiring RAE
to use a database to find the object. We decided not to use this feature because it
doesn’t seem realistic for our domain; a smart factory should be able to keep track
of the objects within it without making lots of database queries.

6

3.4 Machine Failure and Repair

In the real world, things go wrong. Dynamic events occur. RAE is capable of
responding to dynamic events, so it is desirable to include this feature in the domain.
The most realistic event that can occur in a smart factory is a machine failing.

The Industrial Plant (IP) domain [10], a domain similar to ours, can have ma-
chines dynamically break. When a machine breaks, it can not be used until it has
been repaired. This idea is good, but we decided to try something different. We
wanted to test if RAEplan would take preventive measures in order to reduce the
chance of a failure.

We set the chance that a machine could fail during use to be a function of the
number of times the machine has been used, with more uses increasing the chance of
it failing. Instead of in IP, if the machine fails it could be used again without repair,
just with a higher chance of another failure. If fixed by a robot, the counter for the
number of machine uses would be reduced.

We found experimentally that this approach is ineffective at prompting RAEplan
to decide to take the time to repair the machine. It viewed the cost of the machine
failing to be less than the cost of repairing the machine unless the cost of repair was
near 0. Perhaps if our experiments were over a larger number of orders RAEplan
would repair the machine, but for a small number of orders RAE rarely considers
the option. We therefore suggest using the IP approach to machine failure, as our
approach was found to be ineffective.

3.5 Movement Restrictions

How robots move is largely ignored in our implementation of OF. When executing
a Move command, our implementation maintains the robot in its original position
until the command has finished, when it is then said to be at the final destination.
This isn’t a problem since a robot can’t affect other robots, but it is not realistic.

A more interesting version of the problem stipulates that only one robot can be
in a particular location at any given time. We would then have to move the robot
by one location each time step. It could also create possible dead ends, a property
that OF doesn’t have. We believe that this would be a good addition to the domain
but we didn’t implement it.

7

4 Bugs with RAEplan

During the development of OF, we discovered several bugs with RAEplan’s imple-
mentation.

The earliest bug encountered is that when planning over a non-trivial number of
commands, RAEplan reaches Python’s maximum recursion depth, even though the
depth of the refinement tree was small. We worked with the developers of RAE-
plan and discovered that they were using a recursive implementation of Monte Carlo
rollouts that repeatedly rebuilt the tree while performing rollouts, which takes ex-
ponential space. The developers of RAEplan have sense changed their Monte Carlo
rollout implementation so that the tree can be reused and the results stored in linear
space.

The original RAEplan implementation was missing a key feature: the ability to
use uninstantiated variables. Without using uninstantiated variables, the only way
for RAEplan to search over various options is to create tasks that will instantiate
them for you (e.g. ChooseRobot). This means that RAEplan could only plan over
a small subset of method instances, equal in size to the number of combinations
of methods for choosing how to instantiate the free variables. After bringing this
to their attention, the developers of RAEplan have sense implemented this feature,
allowing RAEplan to search over a much larger search space.

While testing RAEplan with Bash scripts, we also discovered that the RAEplan
system sometimes takes unexpectedly large amounts of memory. These tests are
designed to stop searching if the tasks are not completed after a certain amount of
time. We believe that RAEplan is orphaning child processes when it is unable to
solve the problem. Our findings were shared with the developers of RAEplan, but
they were unable to reproduce the bug. This issue is still being explored.

5 Related Work

To our knowledge, four other domains [10] for RAEplan have been created and a
fifth is in development. The Explorable Environment (EE) domain has more tasks,
refinement methods, and commands than OF does, and it has dead ends. The
Chargeable Robot (CR) domain has dynamic events and dead ends. CR also uses
sensing commands to identify the locations of objects. The Spring Door (SD) domain
is a dynamic environment with lots of robot collaboration. The Industrial Plant (IP)
domain is the most similar to OF. IP is based off of the smart factory environment
as described in the RoboCup Logistics League competition. It requires orders to be
processed in various machines, which may be damaged and require repair. The main

8

difference between OF and these domains is that OF has a much higher branching
factor than they do, especially when OF is handling more orders than machines.
This is especially true because these domains were designed before the uninstantiated
variable feature was implemented, reducing the branching factor even further. These
domains have static command durations. The command durations in OF are random
variables. While the other domains have properties such as dead ends and sensing
which OF doesn’t have, these properties can be added to OF as described in Section
4.

There are few other domains created for planning and acting over operational
models, as most algorithms plan over descriptive models. RAE [4] (without RAE-
plan) and PRS [7] act over operational models, but make choices without planning
ahead. Due to this limitation, domains created for RAE and PRS don’t take effi-
ciency into consideration.

There have been several proposed approaches to the integration of planning and
acting (e.g. PropicePlan [2], SeRPE [4]). These algorithms plan over descriptive
models, not operational models. Unlike RAEplan, These approaches generally can’t
handle unexpected events.

RMPL [6] can handle many complex domains using constraint satisfaction tech-
niques. It generates descriptive models based on programs written in RMPL. In
order to plan [12] [1], RMPL is parsed into a temporal planning problem. RMPL has
been extended to handle error recovery [3] and probabilistic models [11] [8]. Unlike
RMPL, RAEplan doesn’t use a temporal approach and can plan over commands
with unknown time constraints.

HTN planning (e.g. SHOP [9]) uses a special case of RAE’s refinement methods
which it can plan over very quickly. HTN planning doesn’t consider acting and can’t
express as much as RAE’s general methods. This makes HTN domains undesirable
for our purpose.

6 Conclusion

We have proposed a new domain for the evaluation of RAEplan and other similar
systems, and presented several variations on the domain. We presented Redoer, a
technique to redo commands with RAE in the case of unexpected failures. The
domain will be used for testing in an upcoming journal paper on RAEplan.

We have also shown problems with RAE’s concurrent operator. Concurrency
is an important feature for robot collaboration, and future work should be done to
resolve this issue.

9

We did not present data in this paper. Preliminary data we collected led us
to discovering a bug with instantiated variables that is discussed in Section 4. We
have sense had to make a large number of changes to RAEplan and the OF domain,
and have been unable to collect adequate amounts of data before the submission
deadline. Future work will involve collecting data on the handwritten problems we
have created. We also plan to test on computer-generated problems for the domain.

References

[1] Conrad, P., Shah, J., and Williams, B. C. Flexible execution of plans
with choice. ICAPS (2009).

[2] Despouys, O., and Ingrand, F. Propice-plan: Toward a unified framework
for planning and execution. ECP (1999).

[3] Effinger, R., Williams, B., and Hofmann, A. Dynamic execution of
temporally and spatially flexible reactive programs. AAAI Wksp. on Bridging
the Gap between Task and Motion Planning (2010).

[4] Ghallab, M., Nau, D. S., and Traverso, P. Automated Planning and
Acting. Cambridge University Press, 2016.

[5] Helmert, M. On the complexity of planning in transportation domains. Proc.
AAAI (2013).

[6] Ingham, M. D., Ragno, R. J., and Williams, B. C. A reactive model-
based programming language for robotic space explorers. i-SAIRAS (2001).

[7] Ingrand, F., Chatilla, R., Alami, R., and Robert, F. Prs: A high level
supervision and control language for autonomous mobile robots. ICRA (1996),
43–49.

[8] Levine, S. J., and Williams, B. C. Concurrent plan recognition and exe-
cution for human-robot teams. ICAPS (2014).

[9] Nau, D. S., Cao, Y., Lotem, A., and Muoz-Avila, H. Shop: Simple
hierarchical ordered planner. IJCAI (1999).

[10] Patra, S., Traverso, P., Ghallab, M., and Nau, D. Acting and planning
using operational models. Proc. AAAI (2019).

10

[11] Santana, P. H. R. Q. A., and Williams, B. C. Chance-constrained con-
sistency for probabilistic temporal plan networks. ICAPS (2014).

[12] Williams, B. C., and Abramson, M. Executing reactive, model-based
programs through graph-based temporal planning. IJCAI (2001).

11

