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Figure 1: A high level overview of the Epiviz File Server [10] Library. Epiviz File Server library supports directly querying
indexed genomic files. Data files are described in the measurements module and provides a programmatic interface to parse,
query and define transformations over files indexed by Quadtree using any NumPy(-like) function. Transformations are lazily
computed at query time using Dask and the cache layer makes sure we only request for bytes not already accessed. Datasets
and their transformations can be accessed using a REST API and allows developers to build interactive visualization and
exploration tools.

ABSTRACT
Genomic data repositories like The Cancer Genome Atlas (TCGA),
Encyclopedia of DNA Elements (ENCODE), Bioconductor’s Anno-
tationHub and ExperimentHub etc., provide public access to large
amounts of genomic data as flat files. Researchers often download
a subset of data files from these repositories to perform exploratory
data analysis. We developed Epiviz File Server, a Python library
that implements an in-situ data query system for local or remotely
hosted indexed genomic files, not only for visualization but also data
transformation. The File Server library decouples data retrieval and
transformation from specific visualization and analysis tools and
provides an abstract interface to define computations independent
of the location, format or structure of the file. We also present new
approaches to quickly query genomic files using space-partition
indexing data structures. This index can be used for any interval
datasets but in our approach we use this in the context of genomic
data.

1 MOTIVATION AND PREVIOUS WORK
Genomic data repositories like The Cancer Genome Atlas [6], En-
cyclopedia of DNA Elements [5] (ENCODE), Bioconductor’s [9]
AnnotationHub [17] and ExperimentHub [15] etc., provide public
access to large amounts of genomic data as flat files. Researchers
often download a subset of files data from these repositories to per-
form their data analysis. As these data repositories become larger,
researchers often face bottlenecks in their exploratory data analysis.
Increasing data size requires longer time to download, pre-process
and load files into a database, to run queries efficiently.

Interactive visualization of data can be a powerful tool to enable
exploratory analysis. As users get familiar with the data and gain
insights, it would be even more efficient to interactively hypoth-
esize, validate, visualize and compute the intermediate results of
the analysis. Currently available interactive visualization tools for
genomic data, namely genome browsers such as Epiviz [4] [11], fall
into two broad categories. One that uses a database management
system to load genomic data from files into tables, create indices or
partitions for faster query of data by genomic intervals. As genomic



data can be huge, importing large data into databases can take a sig-
nificant amount of time thus making this process often unfeasible.
The other category of genome browsers query data directly from
indexed genomic file formats like BigBed, BigWig [12] or Tabix
[14]. However these tools are limited only to exploration of data
from files.

Genomic files hosted on public repositories are fairly stable and
often do not change. Also when the library queries the file for data,
it first parses the index of these files. Given these conditions, we
can either pre-merge the index of all files or use a data structure to
dynamically update indices as we parse files. This would be similar
to the interval data structure used by GIGGLE [13], which uses a
B+ tree to create an index from thousands of genomic data and
annotation files.

Our previous approach in EFS uses indices for individual genomic
files to query for data. The query efficiency for this system does
not scale well with large numbers of files. Here, we present an
extension to EFS that indices multiple files in a single data structure.
We also present new approaches to quickly query genomic files
using space-partition indexing data structures. This index can be
used for any interval datasets but in our approach we use this in
the context of genomic data.

2 METHODS
2.1 Epiviz File Server
Based on the concepts of a NoDB paradigm [2], we developed
EpivizFileServer [10], a Python library that implements an in-situ
data query system for local or remotely hosted indexed genomic
files, not only for visualization but also data manipulation. Our
design of the File Server library was based on the following goals:

• Efficiently parse minimal necessary bytes from an indexed
genomic file to query data for a specific genomic region

• Define transformations and summarizations directly over
files and lazily compute these at query time

• Scale operations to concurrently process multiple file query
and transformation requests

• Implement cache over files for faster access and improve
repeat query performance

• REST API for developers and bioinformaticians to build in-
teractive visualization and exploratory tools over genomic
data stored in flat files

• Integration with existing bioinformatic tools and software
to interactively visualize and explore genomic data directly
from files

The File Server [10] library decouples data from analysis work-
flows and provides an abstract interface to define computations
independent of the location, format or structure of the file. Our
major contribution on this research project was to efficiently and
intuitively define transformations and summarizations directly over
files, without the hassle of downloading the files locally or prepro-
cess for exploratory data analysis. Using the library, researchers and
analysts can author shareable and reproducible data exploration
workflows in an intuitive and programmatic way. If the files are
hosted on a public server, the library requires the server hosting the
data files to support HTTP range requests [1], so that the parser can
only request the minimum necessary byte-ranges needed to process

the query. The library caches the index and previously queried data
from the file to reduce the numebr of requests, and cleans the cache
when they have not been accessed in a period of time. The library
supports various file formats - BigBed, BigWig and any tabular file
that can be indexed using Tabix. Once these data files are described,
users can define summarizations and transformations on these files
using NumPy (or NumPy-like) functions.

The File Server [10] library uses Dask [21] to scale and concur-
rently process multiple queries and transformations over files. The
cache implementation makes sure we only access bytes not already
accessed and stored locally. Developers of bioinformatic tools and
systems can use the Library’s REST API to build interactive data
visualization or exploratory tools over files.

The system works well for moderate sized repositories to apply
complex transformations over files at query time. This depends
on available system resources (processors, memory) for Dask to
scale and the location of files (local or remote). Our tests on trans-
formations show that latency of the system increases as we apply
transformations over an increasing number of files. The parser
module spends the majority of time reading the index tree to find
positions within the file that contain the data. For example applying
a transformation over 20 files, the system has to individually parse
the index of the 20 files to get the data and then apply transforma-
tions. The generic way to accomplish this task is to search through
the index of each file and locate the target interval. To make this
process faster, as latency is important in interactive visualization
tools, we need a method that scales interval search well for large
number of files.

2.2 Quadtree
2.2.1 Construction. To construct an index that stores information
of multiple files at the same time, we project it into a structure
that allows interval overlaps while still giving a fast search time. A
traditional R-tree would not suffice as it relies on linear continuity
when binning, and insertions from different files would trigger
the balancing. Rebalancing the R-tree might be computationally
expensive. This restricts the use of this data structure as an index
in dynamic systems where we build an index on the fly as queries
are processed.

To avoid the issue of rebalancing, we explored other space parti-
tioning data structures for indexing genomic intervals. Quadtree is
a hierarchical spatial data structure that does not need rebalancing,
and supports both point and interval data. Quadtree subdivides
space into hypercubes for indexing and quick retrieval of data.
There are other Balanced Box-Decomposition Trees [19] that also
achieve similar build time and space usage as a Quadtree. For this
paper we will focus on using Quadtree.

Since our input to build this index is genomic intervals stored in
files, we need to map intervals into a 2D space and index this
space with Quadtree. To map linear intervals to a 2D space, a
popular known technique in mathematics is Space filling curves.
Hilbert Curve is a space filling curve that maps linear data to multi-
dimensional space [8]. In this paper we will only be exploiting 2D
Hilbert Curve to map interval data, but it is possible to apply the
mapping to more complex data. The benefits of using Hilbert curve
than other space filling curves such as Gosper curve are that 1)
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it preserves proximity as data close linearly are also close after
mapping and 2) four hilbert curves of level 𝑖 constructs a hilbert
curve of level 𝑖 + 1 which can be utilized by Quadtree to query
efficiently.

Figure 2: Hilbert curve of level 1, level 2 and level 3 (from
left to right). Note that Hilbert curve of level 0 is composed
of only 1 point.

Definition 2.1. Each reference genome 𝐺 of an organism con-
tains several chromosomes𝐶 of varying length.When sequencing
experiments are run on a sample DNA, the reads are mapped to
the reference genome for various types of functional and sequence
analysis. This results in several genome files 𝐹𝑖 . Each chromosome
𝐶 has a maximum length 𝐿 for a given genome 𝐺 .

Definition 2.2. A File 𝐹 contains non overlapping intervals 𝐼𝑖
mapped to chromosomes using the reference genome.

Definition 2.3. A data interval is an interval 𝐼 = [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑],
𝑠𝑡𝑎𝑟𝑡 > 0, 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 associated with a file id and byte location.
The file id and byte location is metadata that the File Server [10]
uses to get data.

Definition 2.4. A query that is sent into the Quadtree is a search
interval that is defined as 𝐼 = [𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑], 𝑠𝑡𝑎𝑟𝑡 > 0, 𝑒𝑛𝑑 > 𝑠𝑡𝑎𝑟𝑡 .

Definition 2.5. A hypercube or a bounding box is a list of
coordinates in 𝑅𝑑 that defines an enclosed space.

Definition 2.6. Two hypercubes or bounding boxes, namely 𝐴

and 𝐵, intersect if and only if 𝐴 ∩ 𝐵 ≠ ∅.
Definition 2.7. A Hilbert curve of level 𝑖 contains exactly 4𝑖

points.

Definition 2.8. A Quadtree node 𝑛 at level 𝑖 is appropriate for
a hypercube of a data 𝐷 only when the hypercube of 𝑛, namely 𝐶 ,
fully contains 𝐷 and any hypercube of the children of 𝑛 does not
fully contain 𝐷 . In other words, 𝐶 ⊃ 𝐷 and ∀𝑐 ∈{hypercubes of the
children of n}, 𝑐 ⊅ 𝐷 .

Definition 2.9. Aminimum bounding rectangle of rectangles
in 𝑆 is the smallest rectangle 𝑅 that contains all the rectangles. In
other words, 𝑅 =𝑚𝑖𝑛 rectangle ⊇ ∪𝑖𝑟𝑖 , 𝑟𝑖 ∈ 𝑆

Proposition 2.10. For a hilbert curve of level 𝑖 ≥ 0, the number
of points between its starting point and the other end of the diagonal
containing the starting point is (∑𝑖−1

𝑘=0 2 ∗ 4
𝑘 ) + 1.

The proof of this can be done in very simple induction on the
levels, which will be omitted here.

Proposition 2.11. Given a chromosome length 𝐿, the minimum
Hilbert curve that contains 𝐿 is of level ⌈𝑙𝑜𝑔4 (𝐿)⌉.

Proposition 2.11 follows immediately after Definition 2.7, as the
number of points in a level 𝑖 Hilbert curve is 4𝑖 . When building the
index, we first compute the maximum level of the Hilbert curve that
contains the entire chromosome 𝐶 , and we use it as the Quadtree
indexing space. Since the Hilbert space’s side is always a multiple
of four, it naturally splits the space into the nodes of quadtree.

We convert the start and end index of the intervals into Hilbert
curve coordinates, and store the bounding boxes based on only
these two coordinates of each interval. When a node reaches the
maximum entries it can hold, it splits the space into 4 quadrants
and reshuffles the data into the appropriate children nodes, which
is defined earlier. The depth that the data belongs to should be deep
enough to ensure less total searched data but also maintain enough
precision. Once the index is constructed, it can be stored to disk for
portability and compressness. Our methods also support on-disk
based index query operations since generating this index for a large
number of files may not always be fast.

2.2.2 Query. The search interval is first converted into an aug-
mented hypercube, then passed into the Quadtree. Since we only
use the start and end index of a data interval when constructing,
it does not truly represent the shape of the data. Adding the aug-
mented shape calculation into the construction phase creates too
much overhead for each data point. Instead we calculate the aug-
mented hypercube of the search interval by padding different levels
of Hilbert curves into the minimum bounding rectangle. By Propo-
sition 1, we can seperate the search interval into different levels of
hilbert curves, get the diagonal of each hilbert curve and use the
minimums and maximums of x, y coordinates of the diagonals to
acquire the padded bounding box. The padding calculation can be
considered as a constant time when the level of Hilbert curve that
is used to build the Quadtree is fixed.

When a search interval is inputted into theQuadtree, theQuadtree
first searches the current node, then searches all the children of
this node that it intersects (as in definition 2.6) iteratively.

Proposition 2.12. The search method guarantees to find all data
intervals that intersects the search interval.

There are 3 types of relationships between the search interval
and the data interval:

• The search interval covers the whole data interval. In
such a case, the data rectangle is guaranteed to be inside the
searching bounding box as the searching box is padded to
cover every data point in its interval.

• The search interval intersects the data interval at one
end. Thus the endpoint that intersects must be in the search
interval, then it is also guaranteed to be found.

• The search interval is smaller than the data interval.
We claim this still guarantees finding the data. As the search
is traversing down the tree, it searches all the nodes that
overlap with the searching interval. Since the data interval
is larger, although it might have a weird shape, it will still
be at a precision level where it overlaps the search interval.

Thus, this searching guarantees to find all data intervals that overlap
the search interval.
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Proposition 2.13. The Quadtree takes time O(𝑛log𝑛) to construct,
takes O(log𝑛) time to perform a search and uses O(𝑛) space, taking the
max Hilbert curve level of the quadtree and the dimension as constant.

Since our implementation of the Quadtree is almost similar to
the standard Quadtree data structure, We expect the construction
time and query time to be very similar to the standard Quadtree
[19].

3 RESULTS
All tests were run on a standard Amazon AWS EC2 (t2.xlarge)
instance with 4 vCPUs and 16GB memory. To evaluate the impact
of cache on the system, we randomly generated 20 different genomic
range queries and repeatedly queried these against the Web server
for 60 seconds. We use wrk (https://github.com/wg/wrk), a HTTP
benchmarking tool capable of generating significant load to test
the API. We run the tool on its default settings using 2 threads and
10 connections concurrently to send requests to the system.

We run the system on two different modes, one with the cache
feature and the other without the cache. In the cache implemen-
tation, if the given genomic region already exists in the cache, it
is fetched quickly and sent back to the user whereas in the non-
cache setting, the library always parses the file to query data for the
given genomic range. Since local file access is fast, our results are
comparable between the cache and non-cache settings. Instead, we
hosted the files on a S3 object store bucket at University of Mary-
land, adding network latency to the system. The results indicate the
cache implementation significantly improves the performance of
the system. Table 1 displays the results of these tests. To make sure
other processes are not interfering in the benchmarking process,
we disabled the serialization process for file objects discussed in
the methods section.

We also ran a similar experiment to compare the performance
of EFS with existing bioinformatic tools. We use the PyBigWig
python package [18], an extension to the C library, libBigWig that
can read or parse local or remote BigWig and BigBed files. We run
the same experiment as before, where we generate 20 random ge-
nomic ranges and execute these queries repeatedly for 60 seconds
using the PyBigWig library. We read the same remotely hosted file
and measure the average time per query and calculate standard
deviation. We notice that EFS performs significantly faster if the
file is hosted remotely. Unsurprisingly direct access to the local file
using PyBigWig is significantly faster compared to EFS. The extra
overhead is EFS is due to the 1) use of an intermediate represen-
tation such as Pandas DataFrame [16] so that transformations or
summarizations can be performed across/within files and, 2) using
a portable data transfer representation of the results (JSON) so that
multiple clients can query the system. PyBigWig only reports the
intervals and the data in those intervals.

To compare our indexing method, we downloaded the entire
epigenomic roadmap dataset, a total of 1032 files. We extract the
intervals from these files and build a Quadtree index over these
intervals. We randomly choose 100 files to query for intervals in a
given region over the Quadtree index. We compared our indexing
method against the querying from 100 files using the File Server
[10]. We ran the same queries on 100 files using a File Server [10]
with disk cache and memory, and also a file-based Quadtree index.

The result indicates that the Quadtree improves query time sig-
nificantly, which is presented in Figure 3. Not only does Quadtree
improves query time, it also decreases the size of the indices, which
is presented in Table 2.

Figure 3: These plots displays how EFS and Quadtree per-
form on queries on large numbers of files. Although there
are a very large variance on the performance of EFS,
Quadtree handles the queries much faster than the naive ap-
proach.

4 FUTUREWORK
Single cell technologies generate large datasets measuring tens
of thousands of features over thousands of single cells. Although
very efficient to query by genomic region, if we are only inter-
ested in a few cells from such large matrices, the EFS library using
the tabix format still has to parse the entire row and filter the
columns. Tabix is a commonly used indexing technique for any
tabular genomic data set (the first three columns must be chro-
mosome location, start and end). Interactive analysis, including
visualization of these datasets is a challenging task especially for
queries to filter by columns (or cells) and efficiently transferring
these long matrices between server and client. Piccolo et al. 2019
recommend using coordinate based fixed width formats as a fast
and scalable approach to query tabular genomic data. In addition,
the genomics community has been using HDF5 based formats An-
nData or H5ad [23] and loom (https://loompy.org) to store large
genomics datasets and metagenomic datasets [22]. We are cur-
rently exploring ways to efficiently query HDF5, H5ad or loom
format files. These formats do not natively support remote query-
ing like BigWig or Tabix but require an additional server like h5serv
(https://support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf) setup
for Web queries.

Recent approaches like Pyranges [20] have implemented data
structures for efficiently manipulating genomic intervals in Python.
The EFS library can be extended to incorporate these file formats
and data structures to efficiently query, perform interval overlap
operations and interactively explore multi-omic datasets.

We would like to compare our Quadtree indexing approach with
existing interval indexing structures like Nested Containment Lists
[3], and also the naive File Server [10] naive approach in amore thor-
ough and analytical manner. Adopting the compressed Quadtree
[7] construction would reduce the size by a little. We would like to
extend the File Server library to use the Quadtree as an index over
files when it queries for data.
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Table 1: Impact of Cache on Processing Requests

Implementation Avg Latency (in ms) (± SD) Requests (per sec) (± SD)
EFS − No Cache (remote file) 1152 (± 201.32) 8.2 (± 0.44)
EFS − Cache (remote file) 68.41 (± 83.55) 179.4 (± 3.2)

EFS (local file) 36.05 (± 8.74) 284.1 (± 41.31)
PyBigWig (remote file) 121.864 (± 40.67) −
PyBigWig (local file) 0.52 (± 0.28) -

Table 2: Comparison of File Size

Implementation Indexes on Chromosome 11 of a file
Precomputed Quadtree Index 318.3 MB

BigWig R-tree Index (Lower Bound Estimate) ∼ 4 G

4.1 Conclusion
Based on the concepts of a NoDB paradigm, we present a file-based
Python library, an in-situ data query system for indexed genomic
files, not only for visualization but also transformation. The library
implements several features provided by a traditional database
system for query, transformation and caching. We also presented a
new approach to index and query large amounts of genomic data,
which improves our EFS performance. We discussed new research
approaches to build a comprehensive file-based data visualization
and exploration system for genomics datasets.
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