
A Module System for a Racket-like Language
Abhishek Mishra

University of Maryland, College Park
amishra6@terpmail.umd.edu

ABSTRACT
For any reasonably sized program, a module system is a necessity
to organize code and minimize code reuse. This paper describes
the implementation of a module system for a functional language
syntactically and semantically analogous to Racket. The imple-
mentation utilizes syntactic desugaring to link multiple modules
together into a single program which is finally compiled. The mod-
ule system is straightforward and lightweight, meant to aid with
future experimentation with the Racket sublanguage.

1 INTRODUCTION
Module systems are an integral part of any programming lan-
guage as they allow for increased expressiveness and extensibility.
Racket’s module system is fairly straightforward; module declara-
tions (not submodules) are only permitted in the top level, modules
share a global namespace, and dependencies/exports are statically
declared [1]. These are three qualities that should be preserved
during the implementation of modules for the smaller Racket-like
language used in this paper.

This language, which will be referred to as Bracket (suB-Racket),
is a subset of Racket with less functionality, meant for implementing
and experimenting with new language features. A well-formed
program in the language appears like so:

1 #lang racket

2 (begin
3 (define ...)

4 (define ...)

5 ...

6 body)

where body is the expression evaluated and returned as the
program’s final result. With the use of modules, one could write
programs that reduce code reuse and allow for separation of code
based on functionality. For example:

File 1: list.rkt
1 #lang racket

2 (begin
3 (provide fold map)
4 (define (fold ...) ...)

5 (define (map ...) ...)

6 ...)

File 2: main.rkt
1 #lang racket

2 (begin
3 (require "list.rkt")

4 (define ...)

5 ...

6 (... (fold ... (map ...))))

A program should be able to provide the functions it wishes to
make visible to other programs, and require any specific files it
may need. When a program is required, it should only be able to
access functions that are provided by the imported program. It’s
important to note that based on the definition of Bracket, a program
may only produce a single result. Based on the previous example,
any side effects from the body expression of list.rkt would be
ignored during the evaluation of main.rkt. This is differs from
Racket’s own module system which runs the body of a module
when it is imported [1].

2 IMPLEMENTATION
The final goal of the implementation is to provide a single executable
that has gathered all the required dependencies, and can run the
program without any issues. To accomplish this, the compiler must
traverse the program’s dependencies, identify all the provided func-
tions, and make them accessible from the program. This means
any program’s imports/exports should be easily available to read,
and the compiler should be able to link the main program to the
provided definitions.

2.1 Programs to Modules
The first goal is to make imports/exports accessible to the compiler
when it is loading dependencies and looking for definitions. A pro-
gram in Bracket is syntactically formed as `(begin ,ds ... ,e)
where ds is a list of definitions preceding the main body. Also,
provide and require definitions can appear within ds in any or-
der, which must be accounted for. For example, the following is
valid:

1 #lang racket

2 (begin
3 (define (f x) (g x))

4 (provide f)

5 (require "g.rkt")

6 ...)

This is handled in the implementation by transforming the pro-
gram into a module in a single pass before any dependency resolu-
tion is done. Amodule’s syntactic form is `((,imp . ,exp) . ,p)
where imp is the list of filenames or modules this module requires,
exp is the list of provided definitions in this module, and p is a pro-
gram in the form `(begin ,ds ... ,e)where ds has no provide
or require blocks. This transformation, prog->mod, is applied to
the program being compiled, as well as any dependencies that are
loaded.

2.2 Linking
Once the file being compiled has been transformed via prog->mod,
its list of dependencies are readily available. Each file in the list has
its raw text loaded, parsed, and checked for syntax. Afterwards, it is
transformed via prog->mod as well, but dependencies go through
a final transformation: all definitions that are not in a provide
block are removed from the imported module’s main body. This is
to ensure any functions or values intended to be private are not
incorrectly passed into the main program.

Once the dependencies are loaded and transformed, the linking
process begins. Linking is quite straightforward and can be demon-
strated via the following simple example with two programs:



Conference’17, July 2017, Washington, DC, USA Mishra

File 1: p1.rkt
1 #lang racket

2 (begin
3 (provide f)

4 (define (f x) ...)

5 (define ...)

6 ...

7 b1)

File 2: p2.rkt
1 #lang racket

2 (begin
3 (require "p1.rkt")

4 (define (g y) ...)

5 b2)

If compiling p2.rkt, the side effects of expression b1 in p1.rkt
would be ignored due to the semantics of Bracket. The programs
are combined using nested (begin ...) expressions, which is se-
mantically identical to creating a flattened list of (define ...)
statements. However, the resulting code with nested begin blocks
would allow the programmer to easily identify where modules are
separated from each other if needed. The program that results from
the linking process would look like the following:

1 #lang racket

2 (begin
3 (define (f x) ...)

4 (begin
5 (define (g y) ...)

6 b2))

The result would then be compiled like any other Bracket pro-
gram, and it would run and give the desired output. Both f and g
are accessible from the scope of b2, the resulting code is easily di-
gestible, and the Bracket compiler requires no serious modifications
to handle this module implementation since changes are primarily
syntax-oriented.

3 DISCUSSION & RELATEDWORK
This module system provides the core features that are present in
Racket’s module system: modules share a global namespace and
the imports/exports are statically declared [1]. Additionally, since
Bracket modules also function as standalone programs, they can
be separately compiled and manually linked to other compiled
programs. However, this implementation doesn’t provide some of
the advanced features present in other module systems, or even
Racket’s own unit system. For example, recursive modules where
two modules rely on each other’s imports/exports would not be
supported in this implementation of modules, since it would lead
to an infinite nesting of (begin ...) statements.

Another core feature missing from this implementation is the
ability to add nested submodules. Submodules would allow for
even more extensible programs, allowing users to introduce their
own “phases” that complement run-time and compile-time. For
example, using Racket’s submodule system, one could define a test
submodule that would only run when the main program is run;
the submodule could be entirely ignored when the outer module is
imported [1].

Ths implementation ofmodule systems is somewhat alignedwith
those commonly used in some dynamic programming languages
like Ruby and Python. These provide limited to no encapsulation
since their implementations are relatively straightforward syntactic
sugar. However, these languages still succeed because their use case
does not typically warrant advanced modular systems. Meanwhile,
JavaScript is used for dynamic code execution across various ma-
chines with different versions of the language, resulting in a more

complex module system with features such as dynamic loading
and evaluation of modules based on URLs or constantly changing
code [2]. JavaScript’s module loaders are inspired from Java’s class
loaders, Java objects which dynamically load code based on class
names provided by the programmer [3].

Module systems from ML were also explored prior to developing
this implementation because of the prevalence of ML in program-
ming language literature [4][5]. Although the module systems were
robust and feature-rich, their applications did not apply to this
implementation. For example, the module systems discussed heav-
ily relied on ML’s notion of signatures and structures, which are
paradigms not utilized often in Racket and not even implemented in
Bracket. However, the work is worth revisiting if a module system
is being devised for a typed variant of Racket, since the proposed
solutions for common static type-checking problems are addressed
in these papers.

4 CONCLUSION
Overall, the Bracket module system provides a straightforward,
lightweight solution to fit the use case of the language. Primarily
used for experimenting with language design, it provides the bare-
bone essentials for developers to produce relatively small modules
that can be reused as needed. There are plenty of features to be
added as Bracket grows, such as submodules and units, but the
current implementation provides a means for more advanced ex-
perimentation with the language and future development of a more
intricate module system.

REFERENCES
[1] Matthew Flatt. 2014. You Want it When, Again? - School of Computing. https:

//dl.acm.org/doi/pdf/10.1145/2637365.2517211
[2] David Herman and Sam Tobin-Hochstadt. 2011. Modules for JavaScript. (May

2011).
[3] Sheng Liang and Gilad Bracha. 1998. Dynamic class loading in the Java virtual

machine. ACM SIGPLAN Notices 33, 10 (1998), 36–44. https://doi.org/10.1145/
286942.286945

[4] Andreas Rossberg. 2015. 1ML – core andmodules united (F-ing first-class modules).
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming - ICFP 2015 (Aug 2015), 35–47. https://doi.org/10.1145/2784731.
2784738

[5] Andreas Rossberg and Derek Dreyer. 2013. Mixin’ Up the ML Module System.
ACM Transactions on Programming Languages and Systems 35, 1 (2013), 1–84.
https://doi.org/10.1145/2450136.2450137

https://dl.acm.org/doi/pdf/10.1145/2637365.2517211
https://dl.acm.org/doi/pdf/10.1145/2637365.2517211
https://doi.org/10.1145/286942.286945
https://doi.org/10.1145/286942.286945
https://doi.org/10.1145/2784731.2784738
https://doi.org/10.1145/2784731.2784738
https://doi.org/10.1145/2450136.2450137

	Abstract
	1 Introduction
	2 Implementation
	2.1 Programs to Modules
	2.2 Linking

	3 Discussion & Related Work
	4 Conclusion
	References

