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Abstract

Understanding and being able to predict human mobility is pivotal to
many areas ranging from app development to urban planning. In this ar-
ticle I propose a modified teacher-student approach to predicting human
mobility, specifically mode of transportation for an individual’s trip tra-
jectories. Using output data from a pre-trained ”teacher” human mobility
model, I train various ”student” models to accurately classify modes of
transportation in the same way the ”teacher” does, achieving a maximum
test accuracy of 81.70% on teacher data using a Random Forest model.

1 Introduction

Being able to predict human mobility and its features is crucial to solving vari-
ous problems, however it takes a lot of research and experimentation to do so.
Typically, in order to extract human mobility features, GPS and mobility data
must be extracted for an individual or group and state-of-the-art algorithms can
be used to make predictions about features like the user’s location and mode
of transport. Thankfully, research has shown that real human trajectories tend
to be relatively temporally and spatially regular [3], so using information like
a trajectory’s speed, distance, and waypoints can be immensely helpful in ex-
tracting key information. Using a teacher model that has used these and other
features to extract mobility information, I implement student models which use
the features and labels that the teacher model conveniently provides, training
them to classify modes of transportation the same way the teacher does. Ulti-
mately, this is done with the goal of developing a similar yet condensed model
that is as (or more) capable of predicting mode of transportation as the original.

2 Data

2.1 Overview

The data used in this experiment comes directly from Google in the form of
Google Location History (GLH). A user’s GLH consists of two parts, the actual
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location history, and the semantic data that Google predicts. The semantic
data is the data I used for this experiment, as it summarizes Google’s predic-
tions of what locations a user visited, as well as the type of activity they were
doing (mode of transportation), all the while including the same metrics it used
to make its predictions. This data was chosen because not only does Google
perform their own state-of-the-art mobility feature extraction, but it has been
suggested that Google location data provides ”unmatched individualized human
movement information” [8] when compared to currently-available GPS tracker
data in terms of accuracy, time-span capabilities, and avoidance of compliance
issues.

Figure 1: Example activity segment for a trip

GLH semantic data consists of two types of observations: a ”Place Visit”
and an ”Activity Segment”. We focus on the activity segments (example shown
in Figure 1) as those provide us with Google’s transportation prediction. The
prediction itself consists of a confidence level ranging from ”LOW” to ”HIGH”
and a list of potential activities which have a key for probability, however Google
does not provide the probability and lists everything as 0 probability. For the
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purposes of this experiment, I aimed to predict the most likely activity in the
list instead of all three. In addition to the predicted activity, the segment also
includes start and end locations, distance, duration, and the simplified raw path
that the user took (locations).

2.2 Tidying and Features

After all of the semantic data was collected, it was cleaned by first extracting
the primary activity from the list of predicted activities. This allows us to focus
on and predict the singular most likely mode of transportation for a user’s trip.
Additionally, the duration of the trip was calculated using the start and end
timestamps provided in the semantic data. Then, the average speed of the trip
was calculated by dividing the distance of the trip by its duration. Finally,
entries that had missing data for the necessary features like speed, distance,
and duration were removed, as leaving them would be difficult to use and could
skew weights in the wrong direction.

For this experiment the features we used were the duration, distance, and
average speed of the trip. These are not only the easiest ways to distinguish be-
tween different modes of transportation (a train trip is typically further, longer,
and faster than a walking trip), but they also are features that could be manually
extracted from any location data, and do not limit our model to just Google’s
data. If we included something like confidence which Google calculates them-
selves, it would likely make our model less effective when used on non-semantic
location data.

2.3 Dataset

Label Description Count Percentage
CYCLING User was on bicycle 20 0.85%
IN BUS User was in bus 28 1.19%

IN PASSENGER VEHICLE User was in a passenger vehicle (car) 712 30.34%
IN SUBWAY User was in a subway 3 0.13%
IN TRAIN User was in a train 108 4.6%

IN VEHICLE User was in an unknown vehicle 414 17.64%
MOTORCYCLING User was on a motorcycle 10 0.43%

UNKNOWN ACTIVITY TYPE Activity is not known 35 1.49%
WALKING User was walking 1017 43.33%

Table 1: Frequency and description for each label in dataset

The dataset for this experiment is a collection of 2347 trips for two users
over the span of two years. About half of the trips took place in the United
States, half in India, and very small portion in Serbia and Bosnia. Out of
the trips, about half were walking trips, with the other half being majority in
passenger vehicle or in vehicle. While most of the labels are self explanatory,
IN PASSENGER VEHICLE and IN VEHICLE are more ambiguous. In this
dataset, IN PASSENGER VEHICLE refers to someone traveling in any passen-
ger vehicle (car, van, or truck) while IN VEHICLE is used when Google predicts
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that a user is in a street vehicle, train, or subway but is unsure of the exact
type.

3 Methodologies

3.1 Modified Teacher Student Approach

The traditional teacher student method of machine learning involves an agent,
the ”teacher”, advising another, the ”student”, by suggesting actions for the
student as it’s learning in a sequential decision problem [9]. Additionally, a
primary goal of the teacher student approach is to compress the original teacher
model through such knowledge distillation [5].

In this experiment I employ a simple, modified version of the original teacher-
student approach. Using output from Google’s already trained teacher network
(GLH), I train students using that output, thereby training them to mimic the
teacher network in their classification, with the end goal being good performance
on Google’s own data (like a student taking a teacher’s test) and then application
to other semantic or location data. This is also done in order to compress
Google’s network into a much simpler model that is easier to understand while
still predicting the mode of transportation in a similar manner.

3.2 Models

3.2.1 Support Vector Machine

A support vector machine (SVM) is a machine learning algorithm that classifies
by separating classes using a hyperplane, with the goal being to maximize the
margin between points in either class and the hyperplane [6]. SVM’s also include
support for ”soft margins”, a parameter to determine how many points can
”bleed over” onto the other side of the hyperplane, as well as a kernel function,
which changes how the hyperplane is determined hence allowing for data that
are linearly separable in higher dimensions as well as non-linearly separable data.
Research has demonstrated that Support Vector Machines have outperformed
other models such as multinomial logit in travel mode prediction [7], so they
are a natural candidate for this experiment.

3.2.2 Random Forest

Popular for its ease of use and great results without the need for much hyper-
parameter tuning, random forest (RF) [1] is an ensemble machine learning
method that works by training many decision trees on subsets of the train-
ing data, and combining their results to solve the problem, typically either by
averaging them in a regression task, or majority vote in a classification task.
Research has suggested that RF performs similarly to or better than SVM and
other models in terms of both accuracy and efficiency when it comes to travel
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mode prediction [2]. In particular, RF’s superior advantages come in its ro-
bustness, particularly its capability of handling different variables and modeling
non-linear relationships such as the ones in our problem.

3.2.3 Artificial Neural Network: Multi-layer Perceptron

The multi-layer perceptron (MLP), sometimes used to refer to any kind of Ar-
tificial Neural Network [4], is feed-forward neural network that consists of an
input layer, one or more hidden layers, and an output layer. Inputs start with
weights, and these weighted inputs are passed through an activation function
which can be linear or non-linear, finally reaching the output layer which is
responsible for outputting a vector in the format needed to classify.

Research has suggested that, like SVM’s, Aritificial Neural Networks (ANN),
specifically MLP’s outperform various other models in travel mode prediction
tasks. Additionally, MLP tends to outperform SVM, MNL, and RBF ANN
overall, specifically when predicting car trips and public transportation trips
[7], which make up the bulk of our dataset.

4 Implementation and Results

4.1 Model Accuracy and Tuning

First, baselines for each model were implemented to get a sense of how the
models generally perform against each other, and which one is the best for our
problem overall. All training and testing was done on 80/20 splits, with accuracy
being the mean accuracy given the test data and labels. Additionally, the
Support Vector Machine and Multi-Layer Perceptron Models had the training
data normalized beforehand as both are susceptible to differing scales.

• Support Vector Machine: a radial basis function kernel is used as the
data is not linearly separable, the regularization parameter is 3 for some
increased regularization and less support vectors, and gamma (influence
of each training example) is set to 0.1 to prevent overfitting of the data.

• Random Forest: the baseline RF uses 100 trees and Gini coefficient to
measure the quality of each split. There is also no limit to the depth of
each tree, and trees are expanded until all leaves are pure or contain less
than two samples. Finally, there are no limits on the number of nodes or
the impurity needed to stop tree growth early.

• Multi-layer Perceptron: The baseline of the multi-layer perceptron
contains three hidden layers, each of size 50. The activation function for
these hidden layers is the rectified linear unit function (RELU), and the
solver for the weight optimization is the limited-memory BFGS algorithm,
which tends to work well on smaller datasets. The maximum iterations
was set to 500 so that it can properly converge. Finally, the learning rate
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is adaptive, changing from constant when epochs don’t decrease training
loss. The network is trained using back-propagation.

Figure 2: Performance of our three models, clearly showing that Random Forest
achieved greater test accuracy than the other two

Figure 3: Graph showing accu-
racy vs. number of trees, indicat-
ing initial growth, a small spike
around 171 trees, and slight fluc-
tuation after

Figure 4: Graph showing accu-
racy vs. maximum tree depth,
showing initial growth, a peak
around 13 nodes deep, and taper-
ing off at the end

After comparing the baseline models, it was evident that Random Forest was
the most appropriate for this dataset. A graphical representation can be seen
in Figure 2. With no tuning it achieved a test accuracy of around 79.15%,
compared to around 71.28% with the multi-layer perceptron, and just 48.72%
with SVM. As such, I chose to continue working with and tuning the Random
Forest model to achieve the highest test accuracy possible.

Two crucial parameters of the Random Forest that I chose to focus on were
the number of trees in the forest and maximum depth of each tree. The number

6



of trees was an arbitrary 100 for the baseline, and max depth was set to limit
when all leaves are pure or the leaves contain less than two samples. Iterating
through the number of trees from 1 to 400 (in intervals of 10) achieved a maxi-
mum test accuracy of around 81.06% at 171 trees. Following this and using the
optimal 171 trees, iterating from 1 to 30 nodes deep for the maximum depth
achieved a best combined test accuracy of 81.70% at 13 nodes deep: a 2.55% im-
provement over our baseline random forest model. Figures 4 and 5 graphically
depict the iterations gone through to achieve the maximum accuracy.

4.2 Classification Analysis

In addition to maximizing the accuracy of our model, learning how well it
classifies certain labels is crucial to understanding how it works and what im-
provements can be made in the future. Out of the labels CYCLING, IN BUS,

Label Precision Recall F1 Support
CYCLING 0.00 0.00 0.00 6

IN BUS 0.00 0.00 0.00 3
IN PASSENGER VEHICLE 0.81 0.78 0.8 146

IN SUBWAY 0.00 0.00 0.00 1
IN TRAIN 0.56 0.60 0.58 15

IN VEHICLE 0.95 0.79 0.87 97
MOTORCYCLING 0.00 0.00 0.00 2

UNKNOWN ACTIVITY TYPE 0.00 0.00 0.00 7
WALKING 0.75 0.91 0.82 193

Table 2: Table showing the precision, recall, f1 score, and support of our model
on each label found in the testing subset

IN PASSENGER VEHICLE, IN SUBWAY, IN TRAIN, IN VEHICLE, MOTOR-
CYCLING, UNKNOWN ACTIVITY TYPE, and WALKING, this model either
classifies relatively well or terribly, which seems to be directly related to that
label’s frequency in the dataset. See Table 2 for exact values for the precision,
recall, F1 score, and support for each label.

The poorest performing labels were CYCLING, IN BUS, IN SUBWAY, MO-
TORCYCLING, and UNKNOWN ACTIVITY TYPE, which were all predicted
with 0 accuracy. The commonality between these labels is how rare they are.
The support (number of samples of the true response that lie in that class/label)
for all of these was incredibly low (under 10). This means that not only are they
not prevalent in the test set, but they are also rare in the dataset overall. With
such rarity our model does not see enough examples to properly train and label
instances of these classes. Also while not as bad, the IN TRAIN class is the
worst performing label out of those with above-0 accuracy, and out of those it
also has by far the lowest support. Again, while our model may have seen some
examples to train on, it was simply not enough to make an accurate enough
prediction.
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For the three most prevalent labels in the dataset, IN PASSENGER VEHICLE,
WALKING, and IN VEHICLE, the model was able to classify relatively well.
These are obviously the largest contributors to model’s overall accuracy. WALK-
ING had lower precision and higher recall, indicating that the model labels many
trips as walking, even when they are not walking. Even so, it’s accuracy was
still good. As for IN VEHICLE and IN PASSENGER VEHICLE, both had
similar recalls, however IN VEHICLE had incredibly high precision, meaning
that while it missed some instances of IN VEHICLE, almost all of the trips our
model labeled as IN VEHICLE were truly IN VEHICLE. This is presumably
because of the ambiguity that comes with the label, as IN VEHICLE refers
to any vehicle that is not a passenger vehicle. Since they both travel in sim-
ilar manners, it is likely that our model often misclassified IN VEHICLE as
IN PASSENGER VEHICLE.

Overall, the model classifies well. It correctly predicts the most prevalent
labels in the dataset with good accuracy, albeit struggling slightly due to the
ambiguity between passenger and non-passenger vehicles. There are a number
of labels that it completely misclassifies, but this is largely due to their rarity
within the dataset, and simply using a larger set of data with more trips with
such labels should improve the model’s performance.

5 Conclusion and Further Work

This modified teacher student approach shows promise in accurately predicting
the mode of transportation of an individual, while simplifying and condensing
the original model. I demonstrate that by using data from a state-of-the-art,
pre-trained model, a random forest student model can be trained to mimic
the original with very high accuracy, making it nearly as effective without the
original’s complexity. Additionally, not relying on teacher-specific features like
Google’s confidence feature suggests that, assuming Google’s model performs
well on real location data, the student will as well once the necessary features
like distance, duration, and speed have been extracted.

Future work related to this would first be to work with larger, and more
diverse datasets. The dataset used in this experiment was relatively small, and
the accuracy on much larger (but similar) datasets may change, especially when
more modes of transportation are added as labels, and modes which are not
as prevalent in this data become more prevalent. Additionally, this experiment
did not account for the true mode of transportation of the user, as the data was
sampled during random periods over years of travels. It would be extremely
beneficial to see how accurately Google’s original model is able to predict the
mode of transportation of a trip using the true label that the user would have to
keep track of, and then compare it to random forest (student) model’s perfor-
mance on the same data. Finally, a crucial feature of mobility data is the actual
geolocations forming a user’s trip. In the context of transportation prediction, a
geolocation along a certain road (like a highway), near a park, or in the middle
of the ocean, can all be indicative of different modes of transport. Due to time
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constraints and the difficulty of determining such information from latitude-
longitude waypoints, this feature was not incorporated in the experiment, but
should be an integral piece to improving the model going forward.
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