
A Local-Search Approach to Timetable Scheduling
Katherine Sullivan

University of Maryland, College Park
May 2021

katiesul@umd.edu

ABSTRACT
In this paper, I present an implementation to assist in a real-life
problem —assigning prospective graduate students to faculty of
the University of Maryland Computer Science Department. This
timetabling problem is an NP-Hard problem along with other sim-
ilar problems such as the examination timetabling problem and
the high-school timetabling problem. The implementation uses lo-
cal search heuristics and is evaluated using randomly generated
schedules as well as real-life Visit Day data.

1 INTRODUCTION
This research assists in a real-life problem relevant to the University
of Maryland Department of Computer Science: assigning prospec-
tive graduate students to faculty for meetings on visit days. The
goal was to replace the manual assignment that the Assistant Direc-
tor of Graduate Education does each year with a program that can
try many combinations of schedules in order to find one as optimal
as possible much more efficiently than a human could.

The constraints of the schedule are as follows. There are sev-
eral half-hour time slots on visit days for students to meet with
professors, and depending on their interested area of research, stu-
dents can submit their preferences on which faculty they would
like to meet. To ensure students have a good experience, an optimal
schedule honors as many of these preferences as possible, keeping
in mind that many professors have limited availability. Students
may attend tours, which limits their availability. There are also
some soft limits such as trying to give each student about five to
six meetings and also trying to distribute the meetings among the
professors relatively equally.

The problem of assigning graduate students to faculty for visit
days can be considered a timetabling problem. Timetabling problems
seek to schedule events in the most optimal way possible according
to specified objectives. In these problems, there are often different
types of constraints and multiple variables including time, location,
and groups of people. Various types of timetabling problems have
been studied. One example includes the high-school timetabling
problem.While high -school timetabling can vary between different
schools and countries, in general, the object is to assign teachers
to specific classes at specific times in specific classrooms [5]. Some
obvious hard constraints which cannot be violated would include
ensuring that no teacher is assigned to teach two different classes
at the same time, or ensuring that no two classes are assigned to the
same classroom at the same time. Some soft constraints, which can
be violated if necessary but which are preferable to follow, could
include scheduling teachers so that they have appropriate amounts
of planning periods and scheduling teachers so that they do not
have to travel long distances around the school to teach consecutive
class periods.

With all of the different variables and constraints, it is no surprise
that these problems are NP-Hard, meaning that it is not feasible to
determine an optimal solution efficiently and the optimal solution
is in fact often unknown. Luckily, timetabling problems are highly
researched and various methods have been proposed and used to
deal with them.

2 RELATEDWORK
McDiarmid (1972) solves a timetabling problem in which teachers
are assigned to classes and have to satisfy a requirement matrix A =
(𝑎𝑖 𝑗 ) indicating the amount of times a particular teacher has to “meet
with” a particular class; at the same time, the goal is to minimize
the total amount of time and space required in the schedule [1].
McDiarmid reduces this timetabling problem to a graph problem:
the problem is represented as a bipartite graph G with the set of
teachers T and the set of classesC as vertex sets and an edge set with
𝐴𝑖 𝑗 edges joining𝑇𝑖 and𝐶 𝑗 . The timetabling problem can be solved
by finding the chromatic index I (G) and an I (G)-coloring of the
graph [7]. McDiarmid uses a standard graph matching algorithm,
the Hungarian algorithm, to find the I (G)-coloring of the graph and
thus solve the timetabling problem.

While this method seems promising, in the course of my review
of prior work, I determined that reducing the problem to a graph
problem was too difficult or perhaps not even feasible. This is
because my problem involves more variables including graduate
students’ preferences of which faculty to meet as well as potential
time conflicts from both faculty and students, making my problem
more complex than the problem from McDiarmid’s work.

Heuristics are another set of techniques often used in timetabling
problems. A heuristic is like a “rule of thumb” approach to solving
a problem. This type of approach is often useful for approximat-
ing an optimal solution to a problem, especially when there are
a combinatorially large amount of possible solutions that cannot
all possibly be enumerated. Unsurprisingly, timetabling fits this
category, and heuristics are a common approach to solving such
problems. Examples can be seen in the International Timetabling
Competition,a competition held to encourage further research into
the field of complex timetabling problems. A glance over the win-
ners’ PDFs from the lesson scheduling track and exam scheduling
track of the 2007 competition shows that the winning solutions
were based on local search heuristics [4].

Local search is a technique where one starts with an initial fea-
sible (but not optimal) solution to the problem and tries various
neighboring states, or solutions that are very closely related to the
current solution (for instance, in a timetabling problem, a neighbor-
ing solution could be swapping two professors’ lectures from the
current solution). To determine if the move is accepted, part of the
problem definition should include a cost function, which defines
the optimality of a solution. For a timetabling problem, the cost



function could involve measuring how many people received their
preferences. Cost functions can also include penalties or rewards:
for instance, conflicts could incur a negative penalty.

There are many different types of heuristic techniques and even
combinations thereof. Moscato and Schaerf (1998) write about sev-
eral different techniques and “propose the combination of local
search with other solution paradigms, such as genetic algorithms
and constructive heuristics” [2]. In a 1999 paper, Schaerf extends
her work by coming up with an algorithm combining heuristic
techniques and applies the results to real schools [6]. In particu-
lar, Schaerf used a mixture of Tabu Search and the randomized
non-descent method (RNA), a variant of local search in which a
neighboring state may be accepted even if it does not strictly im-
prove the cost function (to allow for potentially getting over a
“plateau” in the cost function space). Azimi (2005) tested different
heuristics (Simulated Annealing, Tabu Search, Genetic Algorithm
and Ant Colony System) to solve the Examination Timetabling
Problem and found that their novel combinations of the heuristics
were more effective than the heuristics used individually [3].

The problem in my research is similar to high-school timetabling
in that there are staff, students, timeslots, and preferences involved.
Based on the promising research on using heuristics for timetabling,
and given this similarity, I elected to use a heuristics approach in
my algorithm.

3 DESIGN
First I discuss the goals I considered when designing the algorithm.
Then I talk about different types of algorithms that I considered in
the design process of the program.

3.1 Goals
In designing the program to solve the visit day problem, I had
several goals in mind:

• The program should be easy to use. Since the program
will be used by others who have not written the program and
who perhaps may not have a Computer Science background,
the program should be simple to run.

• The program should be time and space efficient. Even
though the number of students attending a visit day will be
of moderate size (on the order of hundreds), and there is also
a limited number of faculty, efficiency is important to keep
in mind. The program should be much more efficient than
the prior manual process of creating a schedule.

• The schedule should follow all hard constraints and
attempt to accommodate as many soft constraints as
possible.Hard constraints include ensuring that no students
or professors are assigned to be in two places at once; that no
professors or students are assigned to have a meeting during
a time they indicated they were unavailable; that students
have 1-on-1meetings with professors; and that students have
at least some minimum amount of meetings. Soft constraints
include attempting to give studentsmeetings with asmany of
their preferred faculty as possible, weighting first preferences
higher than second preferences, second preferences higher
than third preferences, and so forth.

In order to make the program easy to use, I wrote the program
in Java and documented my code. I made the program available
to the Assistant Director on a GitHub repository and I included
a detailed documentation PDF on how to run the program and
view the results. I used .CSV files for the input and output files of
the program, which can easily be created and edited in programs
such as Google Sheets or Microsoft Excel. In the documentation, I
showed how to use a Google Form to automatically create a Google
Sheet of results from a form. This makes for a feasible workflow
where the Assistant Director can send out a Google Form survey
to the graduate students, have them fill out information such as
their preferences, and then compile all of this information in a
Google Sheet (during the manual process, the Assistant Director
was already doing this anyway). The Assistant Director can also
send out a Google Form survey to the faculty to get their availability
information (during the manual process, the Assistant Director was
having faculty individually email him their availability; a Google
Form would streamline this process while also collecting the data
in a convenient spreadsheet form for the program).

3.2 Initial Schedule Heuristic
To begin, the program creates an initial schedule that is as optimal
as possible using a simple algorithm. I considered a few different
heuristics for this. First is a naive heuristic (see Algorithm 1), which
serves as a baseline to compare against other potentially better
heuristics. The naive heuristic simply shuffles the list of students
and loops maxNumberofPreferences times, attempting to assign
the current student a meeting with their ith preference.

Algorithm 1 Initial Schedule Heuristic 1 (Naive Baseline)
1: Let students = shuffled list of all students
2: Let n = maximum number of preferences
3: for s in students do
4: for i from 1 to n do
5: Attempt to assign a meeting with s’s ith preference
6: if s has no i+1th preference then
7: Remove s from students
8: end if
9: end for
10: end for

Next is Heuristic 2 (see Algorithm 2). Heuristic 2 attempts to
balance out which students get their preferences. It shuffles the list
of students each round and if a student got their ith preference in
the ith round, they are added to a secondaryStudents list; if not,
they are added to a primaryStudents list. Each round, the algorithm
looks at the primaryStudents first for scheduling meetings and then
the secondaryStudents list (in the first round, the shuffled list of
all students make up the primaryStudents list while secondaryS-
tudents list is initially empty). In this way, students who did not
get their (i-1)th preference should be more likely to get their (i)th
preference as they will be considered first. Additionally, the algo-
rithm shuffles both the primaryStudents and the secondaryStudents
before starting the next round, so that the same student will not be
at the top of the list every round.

2



Algorithm 2 Initial Schedule Heuristic 2 (Priority Lists)
1: Let primaryStudents = shuffled list of all students
2: Let tempPrimaryStudents = []
3: Let tempSecondaryStudents = []
4: Let secondaryStudents = []
5: Let n = maximum number of preferences
6: for i from 1 to n do
7: for s in primaryStudents do
8: Attempt to assign a meeting with s’s ith preference
9: if s has an i+1th preference then
10: if attempt was successful then
11: Add s to tempPrimaryStudents
12: else
13: Add s to tempSecondaryStudents
14: end if
15: end if
16: end for
17: end for
18: for i from 1 to n do
19: for s in secondaryStudents do
20: Attempt to assign a meeting with s’s ith preference
21: if s has an i+1th preference then
22: if attempt was successful then
23: Add s to tempPrimaryStudents
24: else
25: Add s to tempSecondaryStudents
26: end if
27: end if
28: end for
29: end for
30: Clear primaryStudents and secondaryStudents
31: Copy over tempPrimaryStudents to primaryStudents
32: Copy over tempSecondaryStudents to secondaryStudents
33: Shuffle tempPrimaryStudents and tempSecondaryStudents
34: Clear tempPrimaryStudents and tempSecondaryStudents

Another heuristic I considered is Heuristic 3 (see Algorithm 3).
Heuristic 3 sorts the students by increasing order of the number of
preferences they listed. The idea is that if there is a student with
only 2 or 3 professors, for example, they should be looked at first
before students with 5 preferences, because if the student with less
preferences does not get any of theirs, the optimality of the schedule
would likely decrease. In other words, the scheduler should attempt
to give everyone at least one or two of their preferences, and in
order to make this more likely to happen, this heuristic takes this
strategy. The heuristic still uses randomization as it shuffles the
students within buckets of the same number of preferences.

3.3 Local Search Heuristics
As mentioned, I elected to use heuristics in my algorithm based on
the literature review. In particular, I chose to implement local search
heuristics. Local search algorithms begin with a starting state (for
example, an initial schedule in our case) and make small changes
(for example, swapping two appointments in the schedule) to see
if the optimality of the solution improves, where the optimality

Algorithm 3 Initial Schedule Heuristic 3 (Ascending Number of
Preferences)
1: Let listOfArrays = []
2: Let n = maximum number of preferences
3: for i from 1 to n do
4: Create a list of students with exactly i preferences
5: Shuffle the list
6: Append the list to listOfArrays
7: end for
8: for i from 1 to n do
9: for s in listOfArrays[i] do
10: Attempt to assign a meeting with s’s ith preference
11: if s has no i+1th preference then
12: Remove s from listOfArrays[i]
13: end if
14: end for
15: for i from 1 to n do
16: Shuffle listOfArrays[i]
17: end for
18: end for

is determined by the cost function. There are different variants of
local search. Some local search heuristics only accept a move if it
strictly increases the cost function. Others also accept a move if
the cost function remains the same or increases. Still others accept
decreases in the cost function as they may allow the local search to
get over a "plateau" in the search space.

For this program, I implemented a simple local search heuristic.
To find a neighboring state of the current schedule in the program, I
wrote a method called randomMove (see Algorithm 4). The method
selects two random professors and swaps two random timeslots
(essentially cells in the schedule) and then calculates the "satisfac-
tion level," or optimality, of the current schedule. I include penalties
for if the professor is already meeting with the student at another
timeslot, or if a student or professor are now scheduled for a time
they indicated they were not available after the swap. This is to
help discourage the algorithm from selecting swaps like these that
could lower the optimality of the schedule.

4 EVALUATION
In this section, I discuss the cost function which is used to quantita-
tively measure the optimality of schedules created by the algorithm.
Then I discuss the results of experiments run on the different ini-
tial schedule heuristics as well as the local search portion of the
algorithm in order to evaluate their effectiveness.

4.1 Cost Function
The cost function I defined for the problem is a simple one. The pro-
gram checks if students have received their preferences. Assuming
there are n preferences, if a student received their 1st preference,
this results in +n to the cost function; if the student received their
2nd preference, then +(n-1); and so forth. There are also penalties
which decrease the cost function if the swap would schedule a stu-
dent and/or professor at a time when he/she is unavailable, or if the
swap would schedule a student/professor to meet with the same

3



Algorithm 4 Random Move
1: Save the students’ and professors’ current state
2: Let prevSatisfaction = the current satisfaction
3: Select two random distinct professors
4: For each professor, select a random timeslot
5: Swap the meetings at each timeslot between the professors

(professor 1 will meet with who professor 2 is meeting at pro-
fessor 2’s timeslot and vice versa) ⊲ This can include having no
meeting, in which case the swapped professor would not have
a meeting at that spot after the swap

6: Apply penalties for if the professor is already meeting with
that student or if the student or professor is not available at
that time

7: With the penalties applied, let currSatisfaction = the current
satisfaction

8: if currSatisfaction < prevSatisfaction then
9: Revert students’ and professors’ state ⊲ move not accepted
10: end if

person more than once. The penalties are meant to discourage the
local search part of the algorithm from making moves that would
break these schedule constraints. Because the cost function is based
on how "satisfied" the students are with the meetings they receive
according to their preferences, I often refer to the optimality of the
schedule as the "satisfaction" level.

4.2 Initial Schedule Heuristic
To evaluate the three different heuristics, I conducted a trial of 100
rounds. In each round, I used the random schedule generator to test
each of the 3 initial schedule heuristics on the same 100 randomly
generated schedules. In each round, I recorded the currentSatisfac-
tion/maxSatisfaction (the current cost function at the end of the
initial schedule divided by the maximum value the cost function
can attain for the given schedule) as well as the average percent-
age of preferences that students received. Table 1 reports on the
averages of these two metrics across the 100 rounds. The heuristic
with priority lists came out slightly on top over the naive heuristic
while the ascending number of preferences heuristic was much less
satisfactory; therefore, I opted for Heuristic 2.

4.3 Random Schedule Generator
In order to evaluate my algorithm, I wrote a generator function (see
Algorithm 5). The function randomly generates professor availabil-
ity files and student preference files and then runs the algorithm to
create a meeting schedule.

To create realistic schedules, I looked at the data provided from
the 2019 Visit Day as my guide. There were 70 different faculty
listed in the 213 preferences made by 83 different students. The
majority of the faculty were only listed a handful of times; however,
10 were listed greater than 5 times; 1 was listed 10 times; and 1 was
listed 15 times. In real life, some faculty members are likely to be
preferred more than others due to various factors such as popular
research areas or being more well-known. Therefore, I designed the
pool of generic student names to have 85 different student names
and the pool of generic professor names to have 80 professor names.

Algorithm 5 Random Schedule Generator
1: Let students = shuffled list of all students
2: Let n = maximum number of preferences
3: for p in testProfessors do
4: Let t = number of time slots
5: Let n = a random number between t and (t - 5)
6: Select n random distinct time slots and append to p’s avail-

ability
7: end for
8: for s in testStudents do
9: Let n = a random number between 1 and 5
10: Select n random distinct professor names and append to s’s

preferences
11: end for
12: Run the scheduler algorithm on the randomized inputs

I also weighted several professor names to have a higher chance
of being selected for preferences than other professor names by
adding them in the pool a greater amount of times, roughly trying
to follow the distribution in the 2019 Visit Day data.

4.4 Local Search Heuristics
To evaluate the local search portion of the algorithm, I ran 100 trials
using the Priority Lists heuristic to create an initial schedule, as
that was the most promising based on the section 4.2 results. The
experiment took 882.646 seconds to run, or about 8.83 seconds per
round. On average, the local search portion of the algorithm led to a
0.3066% increase in optimality of the schedule. While this may seem
small, it should be noted that the average maximum satisfiability of
the schedules in the experiment was 931.67 which is a large number.
The average optimality of the schedules in the experiment after the
local search portion was 88.49%.

4.5 Real Life Visit Day Evaluation
The Assistant Director gave me the information files from the 2019
Visit Day in order to evaluate the program on realistic data and
learn the format of the data. I ran the scheduler on this data. With
a maximum satisfaction value of 895, the initial schedule heuristic
outputted a schedule with a score of 870, which was improved
to 873 with the local search heuristic. This gives a 97.5% optimal
schedule. The program ran in 8.724 seconds. These results give
even more confidence in the ability of the program to output a
close-to-optimal schedule in fractions of the time it would take a
person to do it by hand. Additionally, students or professors may
have to change their availability or preferences at the last minute.
If this happens, the Assistant Director can simply edit the input
files to the program and re-run it again with the new data. This
would be a painstaking process if done manually.

This year, due to COVID-19, Visit Day was made online. As a
result of this, students did not have to fly or travel into Maryland for
the event, and thus many more students participated than in prior
years. In total, there were 134 students, much more than in 2019
(in 2020, there was no event held due to the pandemic). While I did
not see the data myself to perform experiments on the optimality,
the Assistant Director used the documentation I provided with the

4



Table 1: Initial Schedule Heuristic Evaluation Results

Heuristic Average Satisfaction Average % of Preferences Received

Naive Baseline .8450 .8449
Priority Lists .8826 .8782

Ascending Number of Preferences .2770 .4612

program to run it himself and come up with a schedule. He said
that the program worked successfully. In his words, "Doing twice
the work manually on such a short timeframe would not have been
possible."

5 DISCUSSION
I discuss the results of the evaluations, as well as ethical considera-
tions and future work in this research area.

5.1 Heuristic Results
From Table 1, we see the results of the different initial schedule
heuristics. Interestingly, the Priority Lists heuristic is only slightly
better than the Naive Baseline, while the Ascending Number of
Preferences heuristic is much less optimal. This could be because
the Number of Preferences heuristic prioritizes students with less
preferences. Then when the algorithm looks at students with more
preferences, the professors in their first few preferences may not
have slots left for meetings. Since the cost function prioritizes first
preferences over second preferences and so forth, and because these
later students are more likely to only receive their later preferences,
they are not contributing to the optimality of the schedule as much.
For the Ascending Number of Preferences heuristic, students only
received about 46% of their preferences on average. This supports
the idea that this heuristic is less "balanced" among the students
where students with less preferences are more likely to get all or
most of their preferences and students with more preferences are
less likely.

It is interesting that the Priority Lists heuristic is better than the
Naive Baseline, but not by a very large amount. Perhaps the Naive
Baseline is not such a naive heuristic after all. It could be that many
heuristics will work decently well for creating an initial schedule as
long as they are not unreasonably unbalanced like the Ascending
Number of Preferences heuristic.

The Priority Lists heuristic prioritizes students who did not get
their earlier preferences in the next round, so there is more "bal-
ance" between the students in this regard (i.e., in contrast to the
Ascending Number of Preferences heuristic, it is less likely that
some of the students will receive all or most of their preferences
while some will not). This is supported by looking at the "Aver-
age % of Preferences Received" column in the table: in the Priority
Lists heuristic, students received about 88% of their preferences on
average in contrast to 85% with the Naive Baseline. These results
support the idea that the Priority Lists heuristic is an improvement
over the Naive Baseline approach.

For the local search heuristic results, we saw about a .3% average
increase from the initial schedule. While this is a small number, it
could possibly be explained by the initial schedule heuristic being
a good heuristic for which there may not be a lot of improvement.

Additionally, in the local search portion of the algorithm, the pro-
gram tries over 10,000 swaps. I mainly chose this number so that
the experiments would not run too long (recall that the experi-
ment took almost 900 seconds). If I increased the amount of swaps
the program is allowed to make while still keeping the computa-
tion time reasonable, perhaps the algorithm would find even larger
improvements.

5.2 Ethics
In order to assist in my research, the Assistant Director gave me
access to files from Visit Day 2019. The files included students’
preferences, professors’ availability, and the schedule he came up
with. When handling these files, as they contained personal data, I
anonymized the names (I used generic names such as Jane Doe and
John Smith). The GitHub repository containing the code did include
some of these test files, but as mentioned, they were anonymized,
and I received permission from both my research advisor and the
Assistant Director before pushing any of these files to the repository.

5.3 Future Work
It would be interesting to test this scheduling algorithm on later
as well as other prior Visit Days. Future Visit Days could include
even more students, so more research evaluating the efficacy of this
algorithm on larger groups of professors and/or students would be
useful.

For simplicity, I left out some aspects of scheduling that could
make the program more complex. For instance, if a professor is
very popular, one possibility could be allowing for a professor to
meet with a few students at once instead of only having one-on-
one meetings. Additionally, while I implemented the possibility of
putting in tours (students can sign up for various tours of different
parts of the Computer Science department on Visit Days, which
would take up room in the schedule) I did not write the program to
test the result of moving tours around on the schedule. For instance,
say that there is an HCI Lab tour at 2:00. What if the tour were
moved to 3:00 —would it allow for a more optimal schedule?

Another aspect of the scheduling to study could be the distri-
bution of timeslots between the professors. Some professors or
students could prefer to have their meetings spread out, while some
could prefer to have them close together. This could be implemented
in the cost function as penalties.

Finally, it would be intriguing to try to devise a brute force
algorithm for this scheduling problem. I did not attempt to write a
brute force algorithm given the problem’s complexity, but if this
were to be done in the future, even if done for a few schedule
examples, it would help provide more of a baseline for how optimal
the schedules produced for this algorithm are.

5



6 CONCLUSION
I presented an implementation to a solution for a real-life problem
faced by the Department of Computer Science at the University
of Maryland: matching prospective graduate students with faculty
members on Visit Days. I elected to write a heuristics-based algo-
rithm and evaluated the algorithm using both randomly-generated
schedules and real-life scheduling data from Visit Days.

ACKNOWLEDGMENTS
I would like to thankmy advisor, Dr. DavidMount, and the Assistant
Director, TomHurst, for assistingme in this research. Special thanks
to Nelson Padua-Perez for coordinating this CMSC 499A research
opportunity.

REFERENCES
[1] C. J. H McDiarmid. 1972. The solution of a timetabling problem. IMA Journal of

Applied Mathematics 9, 1 (1972), 23–34.
[2] Pablo Moscato and Andrea Schaerf. 1998. Local search techniques for scheduling

problems. Notes of the tutorial given at the 13th European Conference on Artificial
Intelligence, ECAI (1998).

[3] Zahra Naji Azimi. 2005. Hybrid heuristics for Examination Timetabling problem.
Appl. Math. Comput. 163, 2 (2005), 705–733. https://doi.org/10.1016/j.amc.2003.10.
061

[4] Queen’s University of Belfast. [n.d.]. International Timetabling Competition - The
Finalists. http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm

[5] Andrea Schaerf. 1999. Local search techniques for large high school timetabling
problems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 29, 4 (1999), 368–377.

[6] Andrea Schaerf. 1999. Tabu Search Techniques for Large High-School Timetabling
Problems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on 29 (08 1999), 368 – 377. https://doi.org/10.1109/3468.769755

[7] Dominic JAWelsh. 1971. Combinatorial problems inmatroid theory. Combinatorial
mathematics and its applications (1971), 291–306.

6

https://doi.org/10.1016/j.amc.2003.10.061
https://doi.org/10.1016/j.amc.2003.10.061
http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
https://doi.org/10.1109/3468.769755

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Goals
	3.2 Initial Schedule Heuristic
	3.3 Local Search Heuristics

	4 Evaluation
	4.1 Cost Function
	4.2 Initial Schedule Heuristic
	4.3 Random Schedule Generator
	4.4 Local Search Heuristics
	4.5 Real Life Visit Day Evaluation

	5 Discussion
	5.1 Heuristic Results
	5.2 Ethics
	5.3 Future Work

	6 Conclusion
	Acknowledgments
	References

