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Abstract

Work of Sylvester et al. [1], Winder et al. [2], Horn and Usher [3]

has established the potential of associative learning models to perform

sequential memory tasks. They have accomplished this by combining

standard Hebbian learning with a component which transitions between

activity states. While their work focuses on these models as reflective of

human sequential memory, this work examines them as machine learning

tools and modifies them with the goal of improving recall. Specifically, it

addresses the model of Sylvester et al. [1]. An alteration of the model

is produced primarily by restructuring use of the θ parameter, and the

resultant models demonstrate improved sequential recall. These improve-

ments are examined in both the orthogonal and non-orthogonal context

and compared.
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1 Introduction

One substantial motivation for associative and Hebbian learning research lies

in the potential for models such as Hopfield networks to emulate human neural

activity [4]. One facet of this is the desire to mimic human sequential memory,

namely, our ability to store sequences and patterns in our working memory and

recall them later. Evidence suggests that this form of memory functions fun-

damentally differently from non-sequential memory in that adjacent items in

a pattern are somehow linked in memory; remembering something in sequence

prompts recall of subsequent items [5]. Furthermore, there is a recency bias

of memory in that humans are more likely to remember later elements in pat-

terns [2]. These traits have motivated research into modifications of associative

learning models to capture this unique behavior.

Work of Horn and Usher [3] forms the foundation of one such model. Specifi-

cally we consider work of Sylvester et al. [1] and Winder et al. [2] which expands

on this model. These papers introduce a ‘transition matrix’ V to the standard

Hopfield network structure, and modulate its use by a parameter θ which pre-

vents the network from resting in a minimum for too long. The primary goal

of this paper is to investigate the behavior of this model in order to understand

ways it may be optimized for use as a machine learning tool. Potential applica-

tions for such a model which has robust recall are numerous, and include storage

of large pieces of data for recall in a memory efficient manner, as well as more

straightforward applications to sequential memory.

To accomplish this goal, we first investigate the model of Sylvester et al.

thoroughly to determine its characteristics. Once this is done, we identify areas

in which recall might be improved, propose modifications which we believe will

be beneficial, and empirically evaluate their value by implementing them and

comparing their recall to the original model. We then discuss the ways in which
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our modifications succeeded and failed, propose explanations for the results,

and evaluate the practical merits of the resultant models. In particular, we

focus on the disparity between storing orthogonal patterns and non-orthogonal

patterns in these models, as this is the primary roadblock to practical use of

many Hebbian learning models.

2 Background

2.1 Orthogonalization

In the context of Hopfield networks and Hebbian learning, the ability to or-

thogonalize or approximately orthogonalize input patterns is crucial for accu-

rate recall and storage capacity. As such, many different techniques have been

attempted to accomplish this. Some such techniques employ known orthog-

onalization algorithms, including the Gram-Schmidt method [6][4][7][8][9][10]

and symmetric orthogonalization due to Löwdin [6]. Of these, the frontrunner

seems to be Gram-Schmidt [6][9], for a couple of reasons. First, since it is a

hierarchical method, it is easy to orthogonalize new vectors coming in rather

than reprocess the whole set stored in memory, and so it is more time-efficient

than its alternatives. Second, the structure of Hopfield networks is such that it

is mathematically simple to orthogonalize inputs, since one need only subtract

the field generated when inputting a new pattern to do so. However, this tech-

nique has its own flaw, which lies in its time consumption. Since this involves a

full matrix multiplication, it has O(n2) time complexity to learn each individual

pattern, leading to a total O(mn2) time complexity to store m n-bit vectors.

Furthermore, while Gram-Schmidt will maintain each data point as an attrac-

tor, it often fails to maintain a large basin of attraction around these points.

Empirically, with loads of around 0.24N , Gram-Schmidt Hopfield nets will re-
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turn stored patterns when fed in exactly those patterns. However, when data

was slightly corrupted, only around 50% of trials returned the original pattern

successfully, indicating a large number of spurious attractors [8].

One simple way to alleviate the time-cost issues of Gram-Schmidt and other

orthogonalization methods is to perform ‘pseudo-orthogonalization’, where in-

stead of finding truly orthogonal vectors, the data is scrambled in some reversible

way so that the expected correlation between two data points is close to 0. The

simplest way to do this is to generate a random vector in {−1, 1}n, and then

just element-wise multiply our existing data point with this vector [11]. Mul-

tiplying by the same vector again recovers our original pattern. Alternatively,

some methods add additional neurons [12] and augment input patterns for the

express purpose of orthogonalization, although methods for determining how to

augment the inputs appropriately have mixed success.

More sophisticated methods involve using complex or quaternion valued

Hopfield nets, and masking our original pattern within a partially random com-

plex or quaternion value [11]. These methods are generally more effective, but

involve larger Hopfield nets, as using complex numbers for example requires a

Hopfield network of size 2N , for data points of size N . The benefit to using these

methods is that they have much faster operation times, which can be further

shortened by using the same random values for fixed-size blocks within each

data point, meaning that with blocks of size k, you only need random vectors of

size N/k. However, these methods require external storage of a large number of

random patterns, and are generally less effective than true orthogonalization.

Expansions and generalizations of Hebb’s learning rule have been formulated

to try to overcome the stability problems inherent in Hebbian learning. One of

the first and most influential such modifications is Oja’s rule, which performs a

first order approximation of normalization of weight changes to prevent weights
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from growing unboundedly. Sanger further improved on this by developing the

Generalized Hebbian Algorithm, which incorporates the Gram-Schmidt process

into Oja’s rule [9]. Both techniques are approximate, and so there is a trade-

off between learning rate and likelihood of convergence, but empirical results

find them to be quite effective. These techniques are also related to principal

component analysis, as we briefly touch on later.

A more recent method uses a matrix known as a conceptor. Given a set of

data points, conceptors try to act as the identity matrix for our data points while

being small, with the result being that they are linear objects which identify the

most relevant dimensions for any given data set. Importantly, conceptors from

two different data sets can be easily appended together, and ‘conjugate’ concep-

tors that identify ‘unused’ dimensions can be easily identified. This allows us

to identify the most relevant dimensions for a set of data, and then project fur-

ther data points onto remaining dimensions. Unlike Gram-Schimdt, this allows

data to span multiple dimensions while still maintaining orthogonality between

the groups of data. This approach is fairly new, but when applied to simple

feedforward nets trained to categorize images, conceptor-aided backpropagation

performed as well as the best known previous methods, while using fewer layers

and nodes [13].

For data that is initially biased, traditional Hopfield nets generally perform

very poorly, lacking the ability to even maintain the stored patterns as local

minima. Applying gram-schmidt orthogonalization helps somewhat by ensuring

that each pattern is at least a fixed point, but with biased data Gram-Schmidt

produces a large number of spurious attractors, to the point where many stored

patterns have a basin of attraction of size 0, making it not much better in

practice. To better resolve this issue, a global hard or soft constraint can be

introduced, which either forces the Hopfield net to maintain certain bias ratios
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or makes it more easy to flip to whichever data point the data is biased in favor

of. Interestingly, this adjusted algorithm has a better storage capacity than

traditional Hopfield nets, which increases with bias to load factor of around 0.18

for large values of bias. This implies that generating biased patterns and then

building a Hopfield net that ‘corrects’ for this bias may lead to more effective

storage than even with unbiased patterns [14].

It is interesting to think about Hebbian learning as a form of principal com-

ponents analysis. Traditionally, PCA identifies dimensions along which a set of

data has the greatest variation, which allows you to project data onto decorre-

lated vectors. Hebbian learning does something similar, with a weight matrix

that changes depending on the correlations between neurons. In this sense, the

weight matrix’s eigenvalues can be seen to be the principal components that are

extracted, with the subtraction term in the Hebbian learning rule being exactly

the right term to prevent the matrix from growing without bound [15].

2.2 Oscillatory Hebbian Networks and Sequential Mem-

ory

The study of oscillatory Hebbian networks has developed rapidly in the last few

decades, as a means of connecting relating real world behavior of human brains

to mathematical models. Early empirical discoveries relevant to this subfield

were made by Eckhorn et al. [16], who observed periodic firing of neurons

in the visual cortex. Citing this observation, Horn and Usher [3] developed a

modified Hebbian network, which dynamically reduced the threshold needed to

move to another state, which prevented convergence to a single steady state.

This innovation allowed their network to generate oscillatory behavior, which

allowed them to store a superposition of patterns in the form of oscillating ‘final

states.’
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The study of sequential memory builds on this body of work by introducing

the idea of time asymmetry. Notably, it is well known that human memory

exhibits a ‘recency’ bias, meaning that when learning a sequence of patterns,

we tend to better remember later patterns. This observation was incorporated

by Winder et al. into Horn and Usher’s model through the use of a time biased

Hebbian learning rule [2]. Mathematically, this means that wherever a new

pattern was learned, the weight of all previous patterns was scaled down by

a constant factor, resulting in stronger weights for later patterns. With non-

0 decay factors, this model successfully increased the rate of recall for later

patterns, at the cost of recall for earlier patterns. Notably however, while this

model both oscillates and biases towards remembering later patterns, it does

not oscillate in any specified order, which is somewhat contrary to the idea that

patterns are learned sequentially.

Addressing this, Sylvester et al. [1] introduce a new component V to the

model, which pushes the model to pattern t when at pattern t− 1. Mathemat-

ically, the matrix V is constructed via incremental learning rule:

vtij = (1 − kdv)vt−1
ij +

1

N
atia

t−1
j

By adding V into the existing model with dynamic thresholds, they man-

aged to successfully recall patterns in the order in which they were stored. Our

work will focus heavily on modifications of this idea. In particular, the theoret-

ical behavior of this V matrix, for both orthogonal and non-orthogonal stored

patterns, is directly relevant to our work, and so is explored in greater depth in

Section 4.2.
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3 Observations of the Model

We began our work by implementing the model described in Sylvester et al.

[1] and observing its operation. We constructed plots of its behavior and the

patterns it produced and discovered a curious phenomenon. The model consis-

tently falls into repeating cycles when allowed to run for sufficient time. This

trend we expected, but what surprised us was the nature of these patterns -

specifically, we realized that the model consistently would produce sequences

of patterns closely matching those stored, hit the last pattern in the sequence,

and then go blank for a period of time. This would repeat ad infinitum. These

blank periods, in which the model’s output was not close to any stored pattern,

were unusually consistent in that we observed them no matter what patterns we

stored in the network. With a little work, we discovered the cause - negatives.

Whenever a pattern is stored in this type of network, it’s negation is equiva-

lently stored. During the blank periods, it was these negative patterns which

were being produced.

Upon modifying our plots to account for these negated patterns, we were

able to see the behavior more clearly, and we hypothesized that the nature of

the θ parameter was the cause. When the final pattern in the sequence settled,

θ would eventually flip most of the bits and result in a negated pattern. Once

we had made this observation, we conjectured that we could improve on the

results of the model by changing the direction θ pushed, and thus prevent it

from flipping. In addition, we observed behavior in which a pattern is partially

reached and then passed over, indicating that the model did not smoothly tran-

sition between stored patterns. We hypothesized that the nature of θ caused

this interference. Since θ acts independently on each bit, we theorized that

it would force certain bits out of their fixed points before the convergence of

others. In order to address these concerns regarding our observations of the
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model’s behavior, we proposed two simple modifications to the model. We were

interested to see if these modifications would resolve the concerns raised. In ad-

dition, we wanted to test whether they would interact with orthogonal patterns

in a different way than with random patterns. We present both the analysis we

have done and the evidence we have gathered to test our hypotheses.

4 Methods

4.1 Model Description

We will consider three distinct Hopfield-network models, distinguished by differ-

ent learning rules. Each model uses a fully connected set of N linear threshold

units, which take values from ai = {−1, 1}. We denote at to be the full state of

all N nodes at time t, and refer to node i’s state by at,i. Given a sequence of

input patterns, {ap}p∈{1,...,M}, we generate two matrices W , V via the following

formulas:

W =
1

N

M∑
p=1

(1 − kdw)M−p(apa
T
p − I)

V =
1

N

M∑
p=2

(1 − kdv)M−p(apa
T
p−1)

This is equivalent to the definition of W and V given in Sylvester et al.

[1], which updates W,V as each successive input is read. These two matrices

serve as the building blocks for our three weight matrices. Conceptually, W is

a standard Hopfield network weights matrix, which tries to make each input

pattern a steady state. V on the other hand induces a temporal ordering on the

patterns, with the goal being to move the model from ap to ap+1.

Alongside these two matrices, Sylvester et al. introduce a third component,

which is a time-varying threshold for each node i, denoted θti . The vector of all
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such thresholds is denoted by θi. At each time-step, their model then updates

every node simultaneously, via:

at+1 = sign(β1Wat + β2V at−1 − θt)

β1, β2 are constants that determine the relative weights of W and V . In the

edge-case where β1Wat + β2V at−1 − θt is exactly 0 in some dimension i, the

model defaults to not changing node i’s state. Firing simultaneously has the

negative effect of allowing the model to alternate between two patterns that

are not steady states. However, as discussed in the next section, it also has

theoretical benefits. θt itself updates each time-step, by increasing if node i has

not changed, and decaying if it has. Specifically, given decay and growth rates

0 < kθ < kw < 1, θti updates via

θt+1
i = (1 − kθ)θti + kw · |at,i − at−1,i|

Thus, nodes should not remain in any given state indefinitely, as the thresh-

old will decrease until it is forced to switch signs. Conceptually, the Sylvester

model relies on θ to force the model to alternate, V to push the model from one

pattern to the next, and W to induce convergence to a steady state after the

initial push.

4.2 Theoretical Analysis

Our focus in this work is finding alternative methods of forcing the model to

leave a steady state, which we refer to as ‘destabilization’. To accomplish this,

we perform an analysis similar to that of Winder et al. [2], focusing on the

inputs generated by our stored patterns, before then considering the impact of

various alternative destabilization methods. Following their notation, we define
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hq
V := V aq, and hq

W := Waq, representing the input to the network at each of

the stored patterns. We can then compute:

hq
W = [(1 − kdw)M−q − 1

N

M∑
p=1

(1 − kdw)M−p]aq +
1

N

M∑
p ̸=q

(1 − kdw)M−papa
T
p aq

hq
V = V aq =

1

N
[(1−kdv)M−q−1(aq+1a

T
q aq)+

M∑
p=2,p̸=q+1

(1−kdv)M−p(apa
T
p−1aq)]

We first consider the case of orthogonal patterns, for which aq ·ap = 0. This

then all simplifies to:

hq
W = [(1 − kdw)M−q − 1

N

M∑
p=1

(1 − kdw)M−p]aq

hq
V = V aq = (1 − kdv)M−q−1(aq+1)

In this simple case, it is clear that W tries to make aq a fixed point, whereas

once at aq, V tries to push the network to the next state. Importantly, because

V only pushes to the next state when at aq, we follow Sylvester et al. [1]

in using simultaneous firing, to avoid the potentially ambiguous behavior that

occurs halfway between patterns aq and aq+1. Moreover, when hq
W overpowers

hq
V , the network stagnates near or at pattern aq. To address this, the Sylvester

model considers destabilization factor θt, which directly modifies the input via:

ht = β1h
t
W + β2h

t
V − θt

This has the desired effect of preventing the network from coming to rest.

However, when the network stays at rest at pattern aq, −θt gets closer each iter-

ation to some multiple of −aq. This pushes the network to the complementary

pattern −aq, which is always a spurious stored pattern, and explains why the
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network tends to oscillate between patterns aq and −aq under this formulation.

To address this, we noticed that when the network is stagnant at pattern aq,

the desired effect is to push the network specifically to the point aq+1, which is

the role of V . We have two methods of addressing this, one conservative and

one aggressive.

4.3 Push V

In our first, more conservative approach, instead of appending θ to the input,

we instead increase V relative to W . Formally, we define a new scalar variable

θ′ via:

θ′0 = 0

θ′t+1 = (1 − kθ)θ′t + kw
bitdist(at, at−1)

N

which modifies input ht by:

ht = β1h
t
W + β2θ

′
th

t
V

We call this formulation ‘Push-V,’ because θ′ increases the impact of V.

Importantly, when the data are non-orthogonal, V aq does not push the network

directly to aq+1, as there is interference from cross-talk terms. Therefore, it is

important to also consider the case of non-orthogonal inputs. As in Winder et

al. [2], we replace sums over vectors and dot products with their averages, which

we denote by au = 1
N

∑
p ap and Au = 1

N(N−1)

∑
p ̸=q apaq. We then obtain the

following approximation from hq
W from Winder et al.

hq
W ≈

[
(1 − kdw)M−q − 1

N

M∑
p=1

(1 − kdw)M−p

]
aq +

Au

N

[ M∑
p ̸=q

(1 − kdw)M−p

]
au
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For V , we note that because we sum from p = 2 to M , these estimates have

an additional source of error. Assuming that M is relatively large though, these

errors can be assumed to be small, allowing us to derive an approximation for

hq
V :

hq
V =

1

N

[
(1 − kdv)M−q−1(aq+1a

T
q aq) +

M∑
p=2,p̸=q+1

(1 − kdv)M−p(apa
T
p−1aq)

]

≈ (1 − kdv)M−q−1(aq+1) +
Au

N

[ M∑
p=2,p̸=q+1

(1 − kdv)M−p

]
au

We observe that the leading term in both cases is identical to the case of

orthogonal inputs, with the latter term being due to cross-talk, which pushes the

network neither to aq nor aq+1. This error diminishes when the data becomes

‘more orthogonal,’ which is quantified by a decrease in Au/N , for fixed N,M .

Under ‘Push-V’, the extent to which ht pushes to a different pattern is

approximately:

(β1

[ M∑
p ̸=q

(1 − kdw)M−p

]
+ β2θ

′
[ M∑
p=2,p̸=q+1

(1 − kdv)M−p

]
)
Au

N
au

Because θ′ = 1 produces the original model without destabilization, we

should expect θ′ > 1 whenever destabilization is necessary. This, however,

results in greater error due to cross-talk vs. the original model. Thus, for highly

non-orthogonal values, we would expect that ‘Push-V’ decreases oscillation, but

also results in worse retention. In the case of orthogonal or ‘nearly-orthogonal’

values, we hypothesize that this error should largely disappear, giving us better

performance.
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4.4 Snap-V

Our more aggressive approach does away with the balancing act between W

and V entirely. Instead, the network will, by default, use only W , which should

eventually bring the pattern to a fixed point. When such a state is reached, the

network switches to entirely using V for one period, after which it reverts back

to W . We refer to this approach as ‘Snap-V,’ due to the way the network snaps

back and forth between using the two matrices.

This has major benefits in terms of error over our previous model. Consider

when the network is stable at or around pattern aq. For both Sylvester’s model

and Push-V, the effect of W is to preserve this state. However, when the network

is storing pattern aq, the goal of the network is to reach pattern aq+1. This

means that the effect of W should largely be seen as an error term. Similarly,

when the pattern is falling into aq, the goal of the model is to fully reach aq,

and so the effect of V is largely to confound the model. Conceptually, the goal

of Snap-V is to eliminate this error by using W only when we want to fall into

a state and using V only when we want to progress.

To achieve this, we need to define a metric m that measures when the network

is falling into a pattern vs. seeking the next pattern. This is done by measuring

the bit-distance b each step between the current and previous patterns, and

adding 1/2b to θ. When m reaches or exceeds 1, we switch to V , and reset m

to 0. Formally:

mt =


mt−1 + 1

2bitdist(at,at−1) mt < 1

0 mt ≥ 1

When at = at−1, our model has successfully reached a stable state, and

our metric reflects this by immediately adding 1 to m, triggering the ‘snap.’

Otherwise, our metric increments based on how close our two patterns are,
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Figure 1: This a graph of the behavior of Snap-V when we only ‘snap’ if at =
at−1. The points indicate which pattern we are closest to, measured along the
left y axis. The line graph indicates the distance to the closest pattern, measured
on the right y axis. We observe that the network cycles between 2 patterns ad
infinitum, and thus never ‘snaps’. This motivates our use of m.

which has the positive effect of avoiding stagnation in cyclical states, which is

possible due to our use of simultaneous firing (see Figure 1).

4.5 Estimating Decay

In order to estimate optimal decay values for W and V , we again borrow from

Winder et al. [2]. Specifically, after obtaining the approximation
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hq
W ≈

[
(1 − kdw)M−q − 1

N

M∑
p=1

(1 − kdw)M−p

]
aq +

Au

N

[ M∑
p ̸=q

(1 − kdw)M−p

]
au

Winder et al. argued that maximizing the ratio between the coefficient on

aq vs the coefficient on au should optimize for memory capacity. We should

note that in their original paper, they nonetheless found learning rule decay

rates through experimentation, and the approximation obtained via this theo-

retical method was 50% larger than optimal. However, due to computational

limitations, we are unable to search in the same way, and so rely on this approx-

imation to determine decay rates for both W and V . When using 30 patterns

with net-size 256, we calculate optimal decay for W and V respectively to be

0.1007 and 0.132.

4.6 Experimental Methodology

To test our hypotheses, we began by considering the metric for success. First,

we define the useful notion of a ”chain.” A chain is a sequence of model states

such that if pattern A is recognized at time t1 and pattern B is recognized at

time t2 > t1, then B must come after A in our list of stored patterns. We say

that the length of a chain is the number of distinct recognized patterns occurring

in it.

After having observed the cycling behavior of the original model, we decided

that it was diluting the original metric used in Sylvester et al., the average

length of chains occuring in network behavior [1]. Since the network would

cycle between a few states ad infinitum, the metric would only capture that

cycling, rather than initial model behavior. As such, we decided to cut off the

model once it had completed a chain. We also decided that we did not want to

consider a chain to be valid if it skipped states. We refer to the resultant new
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recall metric as scut.

It’s important to note here that our consideration of complementary states

plays into this decision. For ease of notation, if pattern A is stored in our

network, we refer to its complementary pattern as −A. Per the original metric,

a chain of states such as “-5 -6 -6 -7 -7 -8 -8 -9 -9”, as shown in Figure 2 in

iterations 26-34, would be counted as length 0, while we count it as length 5. In

addition, the sequence “A B C -B C D” would be counted as a chain of length

4 (as -B would be ignored), but we decided that this should instead be a chain

of 3, a chain of 1, and then a chain of 2, since we functionally treat negative

patterns as distinct. We call this metric scut.

To accommodate this stringency we allowed a tolerance for the model state’s

distance to the desired pattern. For most of our work, this tolerance was 95%,

although this parameter is easy to modify. This choice was the result of some

experimentation. At low tolerances, low values of β1 become optimal because W

matters much less, but at high values the results become unreliable. Finally, we

decided to also consider priming the model with its initial pattern in addition

to random ones. This is primarily due to computational considerations. For

random initialization, there is much more variance inherent to the results, and

so we require many repetitions of our trials to be confident in our results. We

still value the results of this method, but we supplement it with the primed

method of initialization to bolster our conclusions.

Using this metric, we ran a cursory search of different parameters to our

modified models to identify situations in which it performed well, both for ran-

dom stored patterns and for orthogonal ones. In the process of doing so, we

also ran this search on the original model to identify the ideal parameters. This

resulted in our selection of models for analysis, consisting of those described in

Table 1. We then directly compared on four tasks: primed recall for orthogo-
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Figure 2: A chart of the states observed over a model’s operation. The plot
tells us which state the network is closest to at iteration t. Blue states are the
patterns as originally stored, and orange states are the complements of these
patterns. If the network is within 95% of its closest pattern, it is marked with
a filled point. If within 80%, it is marked with a hollow point.
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Model kθ kw kdw kdv β1 β2

Sylvester et al. without decay 0.05 0.09 0 0 0.2 1
Sylvester et al. with decay 0.14 0.18 0.1007 0.132 0.7 1

Push-V without decay 0.20 0.40 0 0 0.2 1
Push-V with decay 0.20 0.36 0.1007 0.132 0.2 1

Snap-V without decay N/A N/A 0 0 N/A N/A
Snap-V with decay N/A N/A 0.1007 0.132 N/A N/A

Table 1: The parameters of our optimal models.

nal patterns, unprimed recall for orthogonal patterns, primed recall for random

patterns, and unprimed recall for random patterns.

To perform this direct comparison, we generate sets of patterns to evaluate

on. We used patterns of length 256 bits, and 30 patterns per learnset, well

within the Hopfield learning capacity of ∼ 0.138N . Non-orthogonal patterns are

generated randomly, and the length of our patterns ensures that the minimum

distance between patterns in our set is still quite large. Anecdotally, we observe

that it is at least 20% of the length in the overwhelming majority of cases.

For orthogonal patterns, we use a Hadamard construction, selecting random

rows of the Hadamard matrix of size 256. We then train our models on these

learnsets and evaluate their scut on each of the four tasks 200 times each. From

this, we generate box plots of their recall across these iterations and draw our

conclusions from the results.

5 Results

Our data definitively confirmed our hypothesis that both our modifications

would prevent the oscillation behavior we observed. Note Figs. 3, 4, and 5.

These have been selected for the clarity with which they display the effects

we have observed, though the effects themselves are consistent across runs and

independent of parameter choice or patterns stored.
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Figure 3: A state diagram of the operation of Sylvester et al.’s model, similar
to Figure 2. Note the frequent switches between stored and complementary
patterns.
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Figure 4: A state diagram of the operation of the Push-V model. Note the lack
of switches between stored and complementary patterns.

Figure 5: A state diagram of the operation of the Snap-V model. Note the lack
of switches between stored and complementary patterns.
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Orthogonal? Seeded? Using Decay? Model Type Mean Std. Deviation

Y Y Y
Sylvester 1.00 0
Push-V 30.0 0
Snap-V 30.0 0

Y Y N
Sylvester 30.0 0
Push-V 30.0 0
Snap-V 30.0 0

Y N Y
Sylvester 1.47 0.782
Push-V 1.55 0.960
Snap-V 1.77 1.02

Y N N
Sylvester 6.56 5.66
Push-V 8.97 6.00
Snap-V 9.18 9.10

N Y Y
Sylvester 14.6 6.40
Push-V 11.5 13.7
Snap-V 24.9 9.01

N Y N
Sylvester 1.00 0
Push-V 1.00 0
Snap-V 1.00 0

N N Y
Sylvester 1.42 0.675
Push-V 1.53 0.902
Snap-V 1.93 1.07

N N N
Sylvester 0.46 1.95
Push-V 1.33 3.69
Snap-V 1.12 4.17

Table 2: The performance results of our optimal models.
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Figure 6: Distributions of the scut metric when 200 trials are run for each
model. Here, models are initialized with the first pattern in the sequence. Note
the perfect performance of each model on orthogonal patterns.
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Figure 7: Distribution of the scut metric when 200 trials are run for each model.
Here, models are initialized with a random pattern.
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The optimal parameters identified by our search are listed in Table 1. In

searching for the optimal parameters, one consistent and striking trend we no-

ticed was that β1 was often optimally quite small, meaning that the W matrix

was unimportant to the model’s behavior.

In terms of our tests of recall, the first and most important item to note

is that in the vast majority of cases, models without decay (meaning 0 kdw

and kdv) perform better than their counterparts which have positive decay.

This effect is clear throughout most test cases, with the exception of the cases

of orthogonal patterns seeded with the initial pattern, in which most models

performed flawlessly. The notable and single exception to this is in Sylvester et

al.’s model with decay, shown in Table 2. Potential reasons for this are discussed

in Section 6.

We were successful in confirming our hypothesis that our Snap-V modifi-

cation would improve the recall of the model, particularly in the case of non-

orthogonal patterns when seeded with the initial pattern. In this case, it per-

forms with comparable success to orthogonal patterns. To see this, note the

significant improvements demonstrated in Figure 6. This is somewhat offset

by a relative drop in performance in the randomly initialized case, as shown in

Figure 7, although this seems to be a minor effect.

Unfortunately, we were unable to demonstrate any improvements on the

part of the Push-V model. For many selections of parameters, both the original

model and our modification performed flawlessly for orthogonal patterns when

they were primed, which we believe to be a quality of both models which is

maintained for any size of pattern. For non-orthogonal patterns, however, we

observed that our modification did not significantly improve upon the recall of

the original.
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6 Discussion

While it is true that our models have eliminated the characteristic oscillatory

behaviour of Sylvester et al.’s model, this is not a very practical consideration.

In fact, this behavior is not directly detrimental to the function of the model,

although it seems to be a symptom of problems endemic to the nature of θ in

this model. These problems are discussed at length in Sections 3 and 4.2.

The optimal parameters discovered and listed in Table 1 are worthy of a great

deal of discussion. First, it is important to note that the granularity of our search

for these parameters was relatively low. This is due to practical considerations,

as there is no obvious way to optimize choice of parameters besides exhaustive

search, which is computationally intensive. As such, these should not be taken

to be reliable or exhaustively-tested values. One worthy area of future research

in this subject would be truly optimizing these parameters, either with more

powerful hardware or more elegant techniques of optimization.

The parameters themselves are also worthy of note. In most cases, the

optimal choice of β1 was quite low, indicating that the W matrix was relatively

unimportant to the successful operation of the model. It is difficult to fully

explain this phenomenon, but we have several hypotheses. First, in our metric,

pattern aq was considered successfully reached if the current state at matches

at least 95% of that pattern - in our test cases, this means at least 244 bits

out of 256 matched. One possible explanation is that this threshold is overly

lenient. Intuitively, once close to a pattern aq, V has the tendency to ‘slingshot’

to the next pattern aq+1. This means it is possible to get close to each pattern

successively without ever needing W . With a more stringent metric, it is possible

that the importance of W becomes more apparent. However, the relative success

of the model in the random initialization contexts calls this explanation into

question.
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One notable effect of the granularity of our search lies in the decay variables.

It was unfortunately impractical for us to search for optimal values for these

variables. Instead, they were calculated from the normal operation of the model

as discussed in Section 4.2. One consequence of this may have been the stark

contrast between the success of models without decay and the relative failure of

those with decay. It is possible that our changes to the metric, scut, also resulted

in this effect. Unfortunately, without more exhaustive search, it is difficult to

isolate the cause.

The failure of the Push-V model to significantly outperform Sylvester et al.

seems to indicate that, although a useful stepping stone, Push-V does not go far

enough in combating the error introduced by jointly applying W and V . This

is most clearly indicated by comparison with Snap-V.

The most striking result of our work is in the Snap-V model, and crucially,

its success on non-orthogonal patterns. This is most notable in Figure 6, where

we see it outperform its equivalents for both Sylvester et al.’s model and the

Push-V model. We believe this to be because it does not mix W and V , and thus

minimizes error in contexts when only one is helpful. The success of Snap-V

leads us to believe it may be promising for practical applications. This is because

it seems to overcome the flaw of many Hebbian learning structures in that they

require orthogonality to perform optimally, and in most situations orthogonal

patterns are an unattainable luxury. With more robust stress-testing, it is our

belief that this model may find use in large data or real-world sequential memory

contexts.
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