
Mechanizing and Implementing a Type System for Symphony
William Chung

The University of Maryland
Maryland, USA

wchung1@terpmail.umd.edu

ABSTRACT
SecureMultiparty Computation (MPC) is a cryptographic technique
that allows multiple parties to compute a function jointly on their
inputs, without revealing any information about them beyond what
is learned from the output. Existing MPC languages are limited in
their expressiveness, formal correctness, or ability to help develop-
ers coordinate parties. 𝜆-SYMPHONY is a domain-specific language
for MPC with an emphasis on coordination that extends lambda
calculus. It is formalized with a draft of the syntax, semantics, and
type system with a proof of soundness. A dynamically typed in-
terpreter for Symphony implements and extends 𝜆-SYMPHONY’s
semantics.

I mechanize 𝜆-SYMPHONY’s type system in the Coq proof as-
sistant, thereby increasing confidence in its proof of soundness.
Likewise, I implement the type system as an extension to the exist-
ing Symphony interpreter. Both implementations alter the original
formalization. I find that useful MPC programs written by an ex-
pressive language with party coordination features can be statically
checked based on a formal type system.

1 INTRODUCTION
Secure Multiparty Computation (MPC) gives multiple parties the
ability to compute a joint function over their private data in a
way where the execution of the function reveals nothing more
about their data than what the output shows. The value of this field
leads to the creation of different programming languages that can
translate a user-defined, general-purpose program into a secure
computation protocol.

Unfortunately, many programming languages do not have a
formal static type system. Hastings et al. [3] observe in their SoK
that these programming languages have correctness issues and
silent failures due to their lack of type rules. In addition, some
of these languages fail to provide a way for users to coordinate
parties from being in the scope, limiting the language’s practicality
and efficiency. They also claim that even existing languages with
static type systems and coordination features have issues with
expressiveness. An elaboration of the issues with existing languages
is provided in section 2.

There should be a formal type system and static type checker for
an expressive MPC language that handles party coordination. Due
to the problems of existing static and non-static MPC languages, I
approach Symphony, an expressive domain-specific languagewith a
focus on party coordination. Symphony resolves the problems of ex-
isting MPC languages by having an interpreter with many features
to help developers write relevant MPC programs and an associated
formal core calculus, called 𝜆-SYMPHONY, with a type system.
However, Symphony also has its own concerns as 𝜆-SYMPHONY’s
type system has an unclear proof of soundness with minor bugs
and is not implemented in the expressive Symphony interpreter.

Addressing these concerns, I mechanize 𝜆-SYMPHONY in the Coq
proof assistant [8] to build confidence in its proof of soundness and
implement the type system in the Symphony interpreter as a static
type checker.

2 RELATEDWORK
Existing MPC frameworks provide abstractions to help develop
secure computation protocols. Some of them offer many expressive
features but do not include a formal type system and avoid con-
fronting the issue of party coordination. Other languages that are
based on party coordination have their own challenges.

2.1 General MPC languages
Many languages extend a language to include expressive and famil-
iar features. One of them includes Obliv-C which extends C. Being
an extension of C, it includes well-known features such as recursive
calls and pointers [9]. Another language is OblivVM which extends
Java [4]. It is one of the first MPC languages to add native primitives,
random types, and generic constants. These languages are among
those compared in the SoK of Hastings et al. [3].

However, while these languages are expressive, Hastings et al.
[3] observe that many of the languages had correctness issues, some
not being reported to the user. They recommend taking a more
principled approach to language design and verification based on
programming language research to reduce these issues. Specifically,
they suggest designing and implementing type rules to prevent the
possibility of an incorrect or unexpected outcome.

2.2 Wysteria
Wysteria is a functional programming language with a refinement
type system that provides support for mixed-mode programs [6]. It
handles party coordination through two language constructs called
a parallel block and secure block, leading to programs that can com-
bine both local and private computations. The language comes with
a formal core calculus, 𝜆𝑤𝑦 , that establishes the foundations behind
Wysteria’s semantics and type system. The creators prove type
soundness of the formal core calculus which leads to the demon-
stration that all inter-principal communication and information
leakage occur in secure blocks.

Despite Wysteria’s main feature being its secure block construct,
the body inside this construct has limitations for common program-
ming language features such as recursion. These limitations lead
to trouble when I tried to write the greatest common denominator
function in Wysteria. In addition, Hastings et al. [3] find general
constraints such as a lack of support for divisions by numbers other
than two and a lack of logical operators for Booleans. These restric-
tions hinder users from being able to write expressive programs
for MPC.

William Chung

2.3 𝜆-SYMPHONY
𝜆-SYMPHONY is an expressive and concise domain-specific lan-
guage for MPC [1]. It extends lambda calculus in a way that helps
the developer know which parties have access to which values,
control which parties compute what, and mix MPC with cleartext
computation. Specifically, its introduction of the parallel expression
(par block) allows developers to control which parties would do
the computation for a part of the program. The set of parties that
compute is called the mode. 𝜆-SYMPHONY is more expressive than
Wysteria, providing first-class support for shares leading to more
flexibility in using them. Darais et al. [1] formalizes 𝜆-SYMPHONY,
providing syntax, single-threaded semantics, type system, and dis-
tributed semantics with a proof of soundness.

While the formalization proves progress and preservation for
type soundness, the proofs are unclear and skip over some details,
leading to an opportunity for future elaboration. Like Wysteria,
𝜆-SYMPHONY has an interpreter that extends the formal core cal-
culus. However, unlike the formal core calculus it is based on, the
Symphony interpreter is dynamically checked as it does not have a
static type checker. Due to not being statically typed, the interpreter
cannot be ensured to never get stuck.

3 MOTIVATION AND APPROACH
Having observed that previous approaches have limits in either
expressiveness, correctness, or party coordination, I choose to take
an already expressive MPC language, formalize it with an asso-
ciated type system, and implement a type checker based on it. A
language that fits this approach is the Symphony interpreter due to
its expressiveness and associated formal language, 𝜆-SYMPHONY.
While the Symphony interpreter described by Sweet et al. [7] is not
statically typed, the type system of 𝜆-SYMPHONY can be extended
and used to type check the interpreter.

The proofs in the current 𝜆-SYMPHONY paper have problems in
completeness, including aminor bug. To fix these issues, I reproduce
and mechanize the proof of soundness for 𝜆-SYMPHONY in the
Coq proof assistant. The nature of Coq being a proof checker means
that I can say 𝜆-SYMPHONY ’s type system is safe with greater
confidence.

I wrote the prototype type checker for the Symphony interpreter
in Haskell and helped integrate it as a command for the Symphony
interpreter to detect static type errors.

4 MECHANIZATION OF 𝜆-SYMPHONY.
The components of the mechanization include the following four

parts from the 𝜆-SYMPHONY formalization by Darais et al. [1]:
• Syntax: The syntax, from figure 5 of the formalization,

can be represented with inductive datatypes that repre-
sent terms. These will include all expressions and atomic
expressions.

• Operational Semantics: The small-step single-threaded se-
mantics, from figure 7 of the formalization, can be repre-
sented by inductive propositions that take a term and return
a proposition based off it.

• Type System: Types, from figure 5 of the formalization,
can be represented by an inductive datatype. The rules of
the typing system in figure 8 of the formalization can be

implemented through an inductive proposition that takes a
term and type and returns a proposition that type checks
it.

• Proof of Soundness: A proposition that shows that a con-
figuration in 𝜆-SYMPHONY will always be multistep to
a value. This can be shown by making helper theorems
in Coq to prove progress and preservation as defined in
theorem 5.2 and 5.3 of the formalization.

The following key features of 𝜆-SYMPHONY are part of the
mechanization:

• Normal language features: Base literals, binary operations,
atomic conditionals, product types, sum types, IO opera-
tions, let expressions, function calls
• Some features from the paper such as references, sub-

typing, and recursive types are admitted due to time
restraints

• Par blocks and MPC: Parallel execution, share expressions,
embedded expressions, and reveal expressions
• These four features are vital to Symphony and repro-

ducing proofs that include these will improve confi-
dence in the usefulness of the typing system

4.1 Implementation Notes
4.1.1 Syntax and Semantics. Inductive datatypes mainly represent
the context free grammar of the syntax from figure 5. These in-
ductive data types include representations of base literals, pro-
tocols, base types, types, binary operations, expressions, atomic
expressions, and types for binary operators. The atomic and nor-
mal expressions include both basic and MPC features. Definitions
using modules in Coq represent other non-terminals in the syntax.
The modules include the String module to help represent variables
and the ListSet module to help represent sets of parties. Also, the
ZArith_base module helps represent integer literals when they are
needed.

Inductive datatypes represent the semantics metafunctions in
figure 6 and semantics in figure 7 of the formalization. Inductive
datatypes also represent values, the stack, and a configuration. I
use the map module given in my program analysis course to make
an environment. In addition, Inductive propositions represent the
rules in the small-step operational semantics in figure 7 and the
rule to determine a well-formed protocol in figure 9 that would
be used in the semantics. A fixpoint and equivalent proposition
represent the slice function, from the operational semantics, since
the fixpoint guarantee one result while the proposition is easier to
use for inductive propositions.

4.1.2 Type System. I implement the context as a partial map of
types. I also implement well-formedness (type compatibility) and
typing rules of the type system in figure 8 and figure 9 through
inductive proposition with different cases for each typing rule.

4.1.3 Proof of Soundness. In this mechanization, I prove sound-
ness of the typing system by proving the theorem of progress and
preservation listed in Theorem 5.2 and 5.3 of the formalization. I
prove progress of a configuration by first defining what a terminal
configuration is based on Theorem 5.1. Then, I prove many sup-
porting lemmas such as canonical lemmas for each value, lemmas

Mechanizing and Implementing a Type System for Symphony

Figure 1: Proving the Type of Millionaire’s Problem
Definition xexpr: expr := ParE ["A"] (AtomicE ReadIntE).

Definition yexpr: expr := ParE ["B"] (AtomicE ReadIntE).

Definition sxexpr: expr := (ParE ["A"; "C"] (AtomicE (ShareE ["A"] ["C"] "x"))).

Definition syexpr: expr := (ParE ["B"; "C"] (AtomicE (ShareE ["B"] ["C"] "y"))).

Definition rexpr: expr :=(ParE ["C"] (AtomicE (BinopE LTOpp "sx" "sy"))).

Definition zexpr: expr := (ParE ["A"; "C"] (AtomicE (RevealE ["A"] "r"))).

Definition millExpr: expr := (ParE ["A"; "B"; "C"]
(LetE "x" xexpr (LetE "y" yexpr (LetE "sx" sxexpr
(LetE "sy" syexpr (LetE "r" rexpr (LetE "z" zexpr (ParE ["A"] (AtomicE (WriteE "z")))))))))).

Definition all := ["A"; "B"; "C"].

Theorem testMillionare: (has_type_expr empty_context all millExpr (LocBaseTy (BoolTy) (ClearText) ["A"])).

apply T_Par with ["A"; "B"; "C"]. reflexivity.
(* Proves the type of x *)
+ apply T_Let with (LocBaseTy (IntTy) (ClearText) ["A"]). apply T_Par with ["A"].
reflexivity. apply T_ReadInt with "A". reflexivity. intros H. inversion H.
(* Proves the type of y *)
- apply T_Let with (LocBaseTy (IntTy) (ClearText) ["B"]). apply T_Par with ["B"].
reflexivity. apply T_ReadInt with "B". reflexivity. intros H. inversion H.
(* Proves type of sx *)
* apply T_Let with (LocBaseTy (IntTy) (Enc ["C"]) ["C"]). apply T_Par with ["A"; "C"].
reflexivity; auto. apply T_Share with "A" ["A"]; auto. apply T_Var. apply WF_Base.
split; reflexivity. reflexivity. intros H. inversion H. reflexivity. split; reflexivity.
intros H. inversion H.
(* Proves type of sy *)
** apply T_Let with (LocBaseTy (IntTy) (Enc ["C"]) ["C"]). apply T_Par with ["B"; "C"].
reflexivity; auto. apply T_Share with "B" ["B"]; auto. apply T_Var. apply WF_Base.
split; reflexivity. reflexivity. intros H. inversion H. reflexivity. split; reflexivity.
intros H. inversion H.
(* Proves type of r *)
*** apply T_Let with (LocBaseTy (BoolTy) (Enc ["C"]) ["C"]). apply T_Par with ["C"].
reflexivity. apply T_Binop with IntTy IntTy; auto. apply T_Var. apply WF_Base.
split; reflexivity. reflexivity. apply T_Var. apply WF_Base. split; reflexivity.
reflexivity. intros H. inversion H.
(* Proves type of z *)
**** apply T_Let with (LocBaseTy (BoolTy) (ClearText) ["A"]). apply T_Par with ["A"; "C"].
reflexivity. apply T_Reveal with ["C"]. apply T_Var. apply WF_Base.
split; reflexivity. reflexivity. intros H. inversion H. intros H. inversion H.
unfold is_union. assert (party_set_union ["C"] ["A"] = party_set_union ["A"] ["C"]).
apply party_set_union_sym. rewrite H. reflexivity. unfold not. intros H. inversion H.
(* Proves the type of body expression and does a check on the most outer par block's party set *)
(* to prove the type of the whole expression *)
apply T_Par with ["A"]. reflexivity. apply T_Write with "A". apply T_Var.
apply WF_Base. split; reflexivity. reflexivity. reflexivity. intros H. inversion H.
+ intros H. inversion H.
Qed.

William Chung

that show what happens when a variable expression is well-typed,
and that slicing a variable expression preserves its type based on
Lemma B.2 and B.3 of the formalization. I use these lemmas to prove
a modified version of Lemma 5.7 that atomic expressions have the
property of progress. Proving this lemma ranged from applying the
typing rule, such as for the T-Base case, to having to apply one to
all the existing lemmas to show that a certain value was desired
for the small step semantics rule, such as for the T-Binop case. To
prove progress of a configuration, I do case analysis and apply the
progress of atomic expressions for some cases, and use the existing
helper lemmas that prove progress of atomic expressions in some
of the other cases.

I prove preservation of a configuration by proving preservation
of atomic expressions similar to Lemma B.9 of the formalization.
This proof uses some of the previous helper lemmas described
above many times, some automation, and much injection. More
helper lemmas I defined myself include lemmas to help show how
a configuration could be well-typed such as how an environment
could be well-formed depending after being properly updated or a
type could always be well-formed if it is well-formedwhen the party
set is empty. By using the environment update and the variable
slice preservation lemma many times and Lemma B.9, I prove the
preservation property of configurations by using inversion to go
through each typing rule and operational semantic rule.

I then define a stuck configuration as a configuration being not
terminal and being unable to take a multistep. After, I apply my
proofs of progress and preservation with induction to prove sound-
ness for configurations, the property that awell-typed configuration
can never reach a stuck state.

4.2 Differences from the Original Formalization
4.2.1 Syntax and Semantics. Base literals which mean integers
are not the only base type affecting various inductive data and
propositions. In addition, located types and located values are both
respectively flattened in the type and value inductive datatypes. I
make this decision to avoid the complexity of proving equivalent
propositions for two mutually inductive datatypes in Coq.

4.2.2 Type System. I implemented most of the typing rules induc-
tive proposition in Coq similarly to its original formalization. Most
changes in the type systems are based on the changes to base liter-
als and the flattening of located values and types. Two new changes
are made to prove type soundness. The mechanization requires that
no element in the stack can be the empty party set if the stack is
well-typed which is vital to proving progress. The other change is
adding that party set 𝑝 cannot be empty in T-Reveal to make later
proofs in Coq easier.

4.2.3 Proof of Soundness. The original formalization includes sim-
pler proofs for progress and preservation than what Coq requires
as the paper skips over some details. Due to this fact, while I base
the theorems of progress and preservation on the ones in the paper,
I use different lemmas and different methods to reach the same end
goal.

4.3 Results
Due to the Coq program of the mechanization being well-typed,
the proof is logically sound enforcing that the essential parts of the
type system in 𝜆-SYMPHONY are type-safe.

In addition, the following proposition and proof in Coq in Figure
1 demonstrate an example of the mechanization in action. The
expression showcases the MPC features specific to 𝜆-SYMPHONY
in a variation of the Millionaire’s problem. The expression is a
simpler version of figure 3 in the formalization. It has two parties
input their net worth, one party computes which net worth is higher,
and one of the input parties outputs which net worth is higher. The
expression being constructible and well-typed displays how the
mechanized language can allow two parties to reveal who has the
higher net worth to a third party without revealing anything else.
The Coq proof uses typing rules from the mechanization’s type
checking inductive datatype and various tactics to derive that the
expression does have the given type showing successful use of the
mechanization.

Lastly, implementing the mechanization reveals a minor bug in
the original proof of soundness. A proposition that was originally
not in the paper that was needed for a Coq proof to be correct was
that a well-typed stack could contain an empty party set. Overall,
the Coq mechanization is able to reduce bugs from the original
paper which was able to minimize ambiguity from the original type
system.

4.4 Potential improvements
In the future, this mechanization can add references, recursive types,
and subtyping. Improvements to the mechanization also include
less repetitive proofs and clearer variable names. In addition, the
mechanization should use a more, accurate module to represent
sets with more expressive lemmas rather than ListSet.

5 TYPE CHECKER IMPLEMENTATION
I implement the type checker for the Symphony interpreter in
Haskell. Furthermore, I make use of The University of Vermont’s
version of the Haskell standard library. The parsed abstract syntax
tree given to the interpreter is the input for the type checker.

Some type rules are simple to implement. For others, I use tech-
niques based on type checker implementations shown by a book
on type systems by Pierce [5], such as the use of joins, to turn the
declarative rules defined in both 𝜆-SYMPHONY and the Coq mecha-
nization into algorithms. Moreover, since the Symphony interpreter
both generalizes and extends 𝜆-SYMPHONY, the type checker gen-
eralizes and extends the type system for the type checker. An exam-
ple is that certain expressions are now able to contain expressions
other than variables.

I design the type checker to accommodate both 𝜆-SYMPHONY
’s type system and interpreter.

5.1 Judgment
The judgment of the expression consists of the current mode, typing
context, mode scope context, the set of the pre-defined principal lit-
erals, and a source context. A structure with associated expression
monads represents the judgment itself. A constructor that is either
the set of all principals or a power set of principal values represents

Mechanizing and Implementing a Type System for Symphony

the current mode. It is also wrapped around by another constructor
to handle the first-class principal set extension. An environment
that maps variables to types represents the typing context. A dic-
tionary that maps variables to modes represents the mode scope
context. This mode scope context keeps track of variables bound by
polymorphic lambdas and will be used in checks of type compati-
bility. A set of variables represents the set of pre-defined principal
literals to keep track of which principal expressions are literals or
variables. The source context is a structure containing details of
the expression relative to the program such as line number. These
parameters in the judgment structure are updated through a monad
in rules such as T-Let for the typing context and accessed through
the monad in rules such as T-Var.

5.2 Type Checking and Type Synthesis
The type checker is bidirectional, using a mix of functions that do
type checking and type synthesizing.

I implement typing rules where the type generated is more am-
biguous with a type-checking function. An example is T-Fun where
the type of the lambda is added in the type context in the premise
to show that a function is that type. In this case, checking that an
expression is of a given type is easier than generating it. These func-
tions return a monad of the unit to indicate whether or not it could
be checked without an error or the error. Other expressions that
are forced to be checked with a given type include sum injections,
the nill expression, and the fold expression.

Meanwhile, rules such as T-Int that introduce the type, are rela-
tively simple rules to implement as a type synthesis function. To
elaborate, the located type 𝜎@𝑚, for a type 𝜎 depending on the rule,
can be synthesized by accessing and converting the current mode
𝑚 from the expression monad. These synthesis functions return a
monad of a type it generates or an error.

In addition to deciding when to implement a typing rule as type
checking or synthesis, I also determine when to switch between
checking and synthesis for a rule. An example of using a checking
function within synthesizing function is to determine if it is was
appropriate to return the type in the annotation for an annotated
expression. An example of using a synthesis function within a
checking function is to synthesize the type of an expression to
compare this type with a given type.

In general, a paper on bidirectional typing by Dunfield and Kr-
ishnaswami [2] gives much guidance to determine when it was
appropriate to implement a rule as a type checking or type synthe-
sis function.

5.3 Subtyping
Instead of a general rule for subsumption, 𝜆-SYMPHONY originally
has most of its expressions only containing variables instead of
other sub-expressions and has T-Var put a subtyping check in the
premise. This method makes it easier to implement premises that
require types to be synthesized to a certain type in the type checker.
While these expressions can now contain any sub-expression in the
interpreter, a function that determines whether it is a subtype of a
requested type can be called to fulfill the premise during its type
check. The subtyping rules in the paper influence this function. The

function takes two types and a set of subtyping assumptions for
type variables as its arguments.

There are also times when the types to return were ambiguous
due to many types being a supertype of the same types such as in
T-If. To alleviate this problem, the type checker uses a technique
in the book on type systems of using a join function to return
the optimal supertype. I implement the join function based on the
subtyping rules in 𝜆-SYMPHONY. The located type rule suggests
that join of located types is the inverse of joining party sets.

The type checker also uses the subtyping function in situations
that check if expressions could be synthesized to a certain type due
to how subsumption works.

5.4 Type Compatibility
The implemented well-formedness function both checks that a
type matches the syntax from the paper and that the type is type
compatible in the mode scope and current mode as defined by the
rules in figure 9 of the formalization by Darais et al. [1]. In addition,
the type checker enforces that any type returned from the general
synthesizing function is well-formed based on the current mode and
mode scope. An instance of this enforcement is checking the type
given in a type annotation is well-formed using the self-described
function.

In addition, the type check emulates the type compatibility check
of the supertype synthesized in T-Var with a function implemented
that returns the optimal supertype that is type compatible with
the current mode and mode scope. For a located type inputted, the
located type outputted has its location as the intersection of its
existing location and the current mode.

5.5 Extensions to Data Types
Various extensions, additions, and changes aremade from 𝜆-SYMPHONY
to the symphony interpreter that causes the type checker to ex-
tend the original type system. Pairs can be located which motivates
me to implement their typing rules in the type checker similar to
other located types’ typing rules. The interpreter generalizes basic
primitives, so the type checker generalizes their associated rules. Ex-
tensions include lists, which are implemented similar to pairs, and
arrays, which are implemented similar to references. Also, the type
checker extends case expressions to be more like pattern matching
and adds if expressions as a special case for case expressions where
the guard has to be a Boolean. Due to the language being statically
typed, I implement recursive types and polymorphic types in the
type checker based on the original typing rules in the formaliza-
tion and book on type systems. I also implement a change to the
original subtyping rule for recursive types in that when checking
if the body is a subtype of the other, the type variable is assumed
to be a subtype of the other, making the rule sound.

A newly added feature to the interpreter is implicit wire bundles
discussed in the original draft. These values make different prin-
cipals have their own, local version of a value. I implement their
associated synthesis functions in the type checker to be consistent
with the bundle’s syntax and semantics in the interpreter.

William Chung

5.6 Par blocks and MPC
I implement T-Par, one of the rules for type checking parallel expres-
sions, in the type checker by modifying the mode to the non-empty
intersection of the current mode and given mode using a monad
when synthesizing the body expression. I implement T-ParEmpty,
the other typing rule when the intersection of the current mode and
given mode is empty, by synthesizing a type that is well-formed for
the empty mode or checking that the given type is type compatible
with the empty mode.

The other MPC rule implementations also make use of modi-
fying the mode in the judgement and using party set operations.
Moreover, for share and reveal expressions, their associate synthe-
sis functions take a type without locations and make cleartext and
encrypted versions with locations for future use. The type checker
generalizes these implementations to accept more types such as all
primitive types, sums, pairs, lists, and arrays in the type checker
implementation.

A new MPC expression called send, originating from the in-
terpreter, has a similar typing rule implementation to share, but
instead returns a cleartext type as opposed to an encrypted type.

The last change that is accounted for is that cleartext types are
implicitly embedded in the interpreter instead of explicitly using
an embed expression. To account that a cleartext expression can be
implicitly transformed into an encrypted expression, the subtyping
function contains the case that cleartext types are subtypes of their
encrypted type counterpart.

5.7 MPC Operations
A change accounted for when implementing the MPC operations
of primitive operations, mux if, and mux case is that there can be
expressions of cleartext types within encrypted typed expressions
as the cleartext typed expressions would be embedded. The type
checker also generalizes operations to take expressions of any type
that can be shared due to the interpreter generalizing them.

5.8 First-class party sets
The interpreter can use party sets as data, while 𝜆-SYMPHONY
could not. I implement their introduction rules straightforwardly
with the type checker accessing the typing context. However, I put
more thought into how to handle set operations on principal sets
that contain variables or are themselves variables since the results
cannot be determined till runtime. To alleviate this issue, I add a
constructor to the mode datatype to represent if the mode could
not be determined till runtime or not. If it could not be determined
meaning it can be any party set, any operation that takes it as
an argument returns true if it needs to return a boolean or the
mode that represents any mode if it needs to return a mode. As
a result, this implementation allows programs that use statically
non-deterministic principal sets to be statically checked for other
potential type errors.

5.9 Top Level
At the top level, the principals, declarations, and definitions are
given. The type checker adds the principals to the typing context
with the appropriate type and to the set of principal literals. The
type checker design handles declarations in a way where function

principal A B C D E

-- gmw = semi-honest, N-party, boolean sharing

def main : (unit@all -> bool@{E})@all
def main () = par {A,B,C,D,E}
let a = par {A,C,D} share [gmw, bool : {A} → {C,D}]
(par {A} read bool from "delegation.txt") in
let b = par {B,C,D} share [gmw, bool : {B} → {C,D}]
(par {B} read bool from "delegation.txt") in
let c = par {C,D} a && b in
par {C,D,E} reveal [gmw, bool : {C,D} → {E}] c

Figure 2: Symphony Delegations Benchmark Program

declarations can be well-formed with any mode while other decla-
rations can be well-formed with the mode of any principal. This
check makes it so function types can be type compatible in another
mode other than the mode of all principal sets which gives the
developer more flexibility on when to call a function. The defini-
tion expressions are then checked with either the type checking
functions that handle lambdas or general expressions depending
on how it was previously declared. In general, the type checker
returns a monad of the type of what the main function returns or
the type error that results from it.

6 TYPE CHECKER RESULTS
Overall, I implement all of the features in 𝜆-SYMPHONY and the
essential features of the Symphony interpreter in the type checker.
The type checker checks a Symphony program through an inte-
grated Symphony command. I also implement around 30 basic
example programs to test the typing rules in the type checker. All
the source code and test programs can be found in the GitHub repos-
itory at https://github.com/plum-umd/symphony-lang/tree/types-
rebase.

6.1 Benchmark Programs
To make sure relevant programs could be type checked, the type
checker has been tested on typed annotated versions of various
programs of the benchmark suite that tested the interpreter. One
of these benchmarks is the Delegations program in figure 2. This
program takes the Boolean decisions of two input parties. Two com-
puting parties see if they both are true. They then reveal the result
to an outputting party called E. The type checker can successfully
show that the main of this program returned a Boolean of location
E.

Figure 3 shows an example of a variation of the delegations
program that fails to type check due to having the wrong party set
as the revealing mode in the reveal expression. The type checker
returns an error when given this program to showcase the issue
that it was expecting a variable c to be of a subtype to be consistent
with the mode and type given in the share expression.

https://github.com/plum-umd/symphony-lang/tree/types-rebase
https://github.com/plum-umd/symphony-lang/tree/types-rebase

Mechanizing and Implementing a Type System for Symphony

principal A B C D E

-- gmw = semi-honest, N-party, boolean sharing

def main : (unit@all -> bool@{E})@all
def main () = par {A,B,C,D,E}
let a = par {A,C,D} share [gmw, bool : {A} → {C,D}]
(par {A} read bool from "delegation.txt") in
let b = par {B,C,D} share [gmw, bool : {B} → {C,D}]
(par {B} read bool from "delegation.txt") in
let c = par {C,D} a && b in
par {A,B,E} reveal [gmw, bool : {A,B} → {E}] c

Figure 3: Erroneous Symphony Delegations Benchmark Pro-
gram

Lastly, figure 4 showcases a more complicated program that
finds the Hamming distance of two strings inputted by party A
and party B and reveals it to party A without leaking any private
data. The type checker can type check this program as a natural
number with location of party A. The output for these benchmarks
can be shown by running them with the type checker as found in
the GitHub repository. These benchmarks showcase that the type
checker can successfully check programs that perform relevant
multi-party computations.

6.2 Future Work
In the future, we can find a better way to handle type checking
programs with variable party sets. One of these ways includes
implementing refinement types to get more information about these
variable party sets. The type system could draw some influence
from Wysteria’s refinement type system as it also has first-class
principal sets [6].

7 CONCLUSION
Expressive, statically typed MPC languages that can help a devel-
oper coordinate parties are beneficial for helping developers make
correctMPC protocols. ExistingMPC languages have issues address-
ing the concerns of expressiveness, formal correctness, and party
coordination. Learning from their issues, I implement a type checker
for the expressive Symphony interpreter based on 𝜆-SYMPHONY’s
type system assured by a mechanization in the Coq proof assistant.
Both the mechanization’s and type checker’s designs accommodate
adjustments from the original 𝜆-SYMPHONY’s type system. As a
result, the type checker can detect type errors in relevant MPC
programs written in Symphony.

In the future, the mechanization can strengthen the confidence
of the type system more by adding more features from the type
checker implemented. Meanwhile, the type checker can implement
refinement types to handle variable party sets better.

REFERENCES
[1] David Darais, David Heath, Ryan Estes, William Harris, and Michael Hicks. 2020.

𝜆-Symphony: A concise language model for MPC.
[2] Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput.

Surv. 54, 5, Article 98 (may 2021), 38 pages. https://doi.org/10.1145/3450952

principal A B

def hammingDist : ((array{{A, B}}((nat[gmw]@{A,B})@{A,B}))
@{A,B} -> {{A,B}} ((array{{A, B}}((nat[gmw]@{A,B})@{A,B}))
@{A,B} -> {{A, B}} (nat[gmw]@{A,B})@{A,B}) @{A, B})@{A, B}
def hammingDist bs0 bs1 = par {A,B}

let len = size bs0 in
let hammingDistRec = (fun [hammingDistRec] i distance →

if i == len then
distance

else
let inc = mux if bs0.i == bs1.i then 0n else 1n in

hammingDistRec (i + 1n) (distance + inc)): (nat@{A,B}
-> {{A,B}} (nat[gmw]@{A,B}@{A,B} -> {{A, B}} nat[gmw]

@{A,B}@{A,B})@{A,B})@{A,B}
in hammingDistRec 0n 0n

def main : (unit@all -> {all} nat@{A})@all
def main () = par {A,B}

let inputA = par {A} read (array {A} nat)
from "hamming-1k.txt" in
let inputB = par {B} read (array {B} nat)
from "hamming-1k.txt" in

let shareA = share [gmw, array {A} nat : {A} → {A,B}]
inputA in
let shareB = share [gmw, array {B} nat : {B} → {A,B}]
inputB in

reveal [gmw, nat : {A,B} → {A}] (hammingDist shareA shareB)

Figure 4: SymphonyHammingDistance BenchmarkProgram

[3] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
SoK: General Purpose Compilers for Secure Multi-Party Computation. In 2019
IEEE Symposium on Security and Privacy (SP). 1220–1237. https://doi.org/10.1109/
SP.2019.00028

[4] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. 2015 IEEE Sympo-
sium on Security and Privacy (2015), 359–376.

[5] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT
Press.

[6] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. 2014. Wysteria: A
Programming Language for Generic, Mixed-Mode Multiparty Computations. In
2014 IEEE Symposium on Security and Privacy. 655–670. https://doi.org/10.1109/
SP.2014.48

[7] Ian Sweet, David Darais, David Heath, Ryan Estes, William Harris, and Michael
Hicks. 2021. Symphony: A Concise Language Model for MPC. In Informal Pro-
ceedings of the Workshop on Foundations on Computer Secuirty (FCS).

[8] The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.
5281/zenodo.5846982

[9] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible Data-
Oblivious Computation. Cryptology ePrint Archive, Report 2015/1153. https:
//ia.cr/2015/1153.

https://doi.org/10.1145/3450952
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.5281/zenodo.5846982
https://doi.org/10.5281/zenodo.5846982
https://ia.cr/2015/1153
https://ia.cr/2015/1153

	Abstract
	1 Introduction
	2 Related Work
	2.1 General MPC languages
	2.2 Wysteria
	2.3 -SYMPHONY

	3 Motivation and Approach
	4 Mechanization of -SYMPHONY.
	4.1 Implementation Notes
	4.2 Differences from the Original Formalization
	4.3 Results
	4.4 Potential improvements

	5 Type Checker Implementation
	5.1 Judgment
	5.2 Type Checking and Type Synthesis
	5.3 Subtyping
	5.4 Type Compatibility
	5.5 Extensions to Data Types
	5.6 Par blocks and MPC
	5.7 MPC Operations
	5.8 First-class party sets
	5.9 Top Level

	6 Type Checker Results
	6.1 Benchmark Programs
	6.2 Future Work

	7 Conclusion
	References

